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ABSTRACT

Image and video synthesis are closely related areas aiming at generating content
from noise. While rapid progress has been demonstrated in improving image-
based models to handle large resolutions, high-quality renderings, and wide vari-
ations in image content, achieving comparable video generation results remains
problematic. We present a framework that leverages contemporary image gen-
erators to render high-resolution videos. We frame the video synthesis problem
as discovering a trajectory in the latent space of a pre-trained and fixed image
generator. Not only does such a framework render high-resolution videos, but it
also is an order of magnitude more computationally efficient. We introduce a mo-
tion generator that discovers the desired trajectory, in which content and motion
are disentangled. With such a representation, our framework allows for a broad
range of applications, including content and motion manipulation. Furthermore,
we introduce a new task, which we call cross-domain video synthesis, in which the
image and motion generators are trained on disjoint datasets belonging to different
domains. This allows for generating moving objects for which the desired video
data is not available. Extensive experiments on various datasets demonstrate the
advantages of our methods over existing video generation techniques. Code will
be released at https://github.com/snap-research/MoCoGAN-HD.

1 INTRODUCTION

Video synthesis seeks to generate a sequence of moving pictures from noise. While its closely
related counterpart—image synthesis—has seen substantial advances in recent years, allowing for
synthesizing at high resolutions (Karras et al., 2017), rendering images often indistinguishable from
real ones (Karras et al., 2019), and supporting multiple classes of image content (Zhang et al., 2019),
contemporary improvements in the domain of video synthesis have been comparatively modest. Due
to the statistical complexity of videos and larger model sizes, video synthesis produces relatively
low-resolution videos, yet requires longer training times. For example, scaling the image generator
of Brock et al. (2019) to generate 256 × 256 videos requires a substantial computational budget1.
Can we use a similar method to attain higher resolutions? We believe a different approach is needed.

There are two desired properties for generated videos: (i) high quality for each individual frame,
and (ii) the frame sequence should be temporally consistent, i.e. depicting the same content with
plausible motion. Previous works (Tulyakov et al., 2018; Clark et al., 2019) attempt to achieve
both goals with a single framework, making such methods computationally demanding when high
resolution is desired. We suggest a different perspective on this problem. We hypothesize that,
given an image generator that has learned the distribution of video frames as independent images, a
video can be represented as a sequence of latent codes from this generator. The problem of video
synthesis can then be framed as discovering a latent trajectory that renders temporally consistent
images. Hence, we demonstrate that (i) can be addressed by a pre-trained and fixed image generator,
and (ii) can be achieved using the proposed framework to create appropriate image sequences.
∗Work done while at Snap Inc.
1We estimate that the cost of training a model such as DVD-GAN (Clark et al., 2019) once requires> $30K.
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To discover the appropriate latent trajectory, we introduce a motion generator, implemented via two
recurrent neural networks, that operates on the initial content code to obtain the motion representa-
tion. We model motion as a residual between continuous latent codes that are passed to the image
generator for individual frame generation. Such a residual representation can also facilitate the
disentangling of motion and content. The motion generator is trained using the chosen image dis-
criminator with contrastive loss to force the content to be temporally consistent, and a patch-based
multi-scale video discriminator for learning motion patterns. Our framework supports contemporary
image generators such as StyleGAN2 (Karras et al., 2019) and BigGAN (Brock et al., 2019).

We name our approach as MoCoGAN-HD (Motion and Content decomposed GAN for High-
De�nition video synthesis) as it features several major advantages over traditional video synthesis
pipelines. First, it transcends the limited resolutions of existing techniques, allowing for the gen-
eration of high-quality videos at resolutions up to1024� 1024. Second, as we search for a latent
trajectory in an image generator, our method is computationally more ef�cient, requiring an order
of magnitude less training time than previous video-based works (Clark et al., 2019). Third, as the
image generator is �xed, it can be trained on a separate high-quality image dataset. Due to the dis-
entangled representation of motion and content, our approach can learn motion from a video dataset
and apply it to an image dataset, even in the case of two datasets belonging todifferentdomains.
It thus unleashes the power of an image generator to synthesize high quality videos when a do-
main (e.g., dogs) contains many high-quality images but no corresponding high-quality videos (see
Fig. 4). In this manner, our method can generate realistic videos of objects it has never seen moving
during training (such as generating realistic pet face videos using motions extracted from images of
talking people). We refer to this new video generation task ascross-domain video synthesis. Finally,
we quantitatively and qualitatively evaluate our approach, attaining state-of-the-art performance on
each benchmark, and establish a challenging new baseline for video synthesis methods.

2 RELATED WORK

Video Synthesis. Approaches to image generation and translation using Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) have demonstrated the ability to synthesize high qual-
ity images (Radford et al., 2016; Zhang et al., 2019; Brock et al., 2019; Donahue & Simonyan,
2019; Jin et al., 2021). Built upon image translation (Isola et al., 2017; Wang et al., 2018b), works
on video-to-video translation (Bansal et al., 2018; Wang et al., 2018a) are capable of converting
an input video to a high-resolution output in another domain. However, the task of high-�delity
video generation, in the unconditional setting, is still a dif�cult and unresolved problem. Without
the strong conditional inputs such as segmentation masks (Wang et al., 2019) or human poses (Chan
et al., 2019; Ren et al., 2020) that are employed by video-to-video translation works, generating
videos following the distribution of training video samples is challenging. Earlier works on GAN-
based video modeling, including MDPGAN (Yushchenko et al., 2019), VGAN (Vondrick et al.,
2016), TGAN (Saito et al., 2017), MoCoGAN (Tulyakov et al., 2018), ProgressiveVGAN (Acharya
et al., 2018), TGANv2 (Saito et al., 2020) show promising results on low-resolution datasets. Re-
cent efforts demonstrate the capacity to generate more realistic videos, but with signi�cantly more
computation (Clark et al., 2019; Weissenborn et al., 2020). In this paper, we focus on generating
realistic videos using manageable computational resources. LDVDGAN (Kahembwe & Ramamoor-
thy, 2020) uses low dimensional discriminator to reduce model size and can generate videos with
resolution up to512� 512, while we decrease training cost by utilizing a pre-trained image genera-
tor. The high-quality generation is achieved by using pre-trained image generators, while the motion
trajectory is modeled within the latent space. Additionally, learning motion in the latent space al-
lows us to easily adapt the video generation model to the task of video prediction (Denton et al.,
2017), in which the starting frame is given (Denton & Fergus, 2018; Zhao et al., 2018; Walker et al.,
2017; Villegas et al., 2017b;a; Babaeizadeh et al., 2017; Hsieh et al., 2018; Byeon et al., 2018), by
inverting the initial frame through the generator (Abdal et al., 2020), instead of training an extra
image encoder (Tulyakov et al., 2018; Zhang et al., 2020).

Interpretable Latent Directions. The latent space of GANs is known to consist of semantically
meaningful vectors for image manipulation. Both supervised methods, either using human annota-
tions or pre-trained image classi�ers (Goetschalckx et al., 2019; Shen et al., 2020), and unsupervised
methods (Jahanian et al., 2020; Plumerault et al., 2020), are able to �nd interpretable directions for
image editing, such as supervising directions for image rotation or background removal (Voynov &
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Figure 1: Left : Given an initial latent codez1, a trajectory� t , and a PCA basisV , the motion
generatorGM encodesz1 using LSTM enc to get the initial hidden state and usesLSTM dec to
estimate hidden states for future frames. The image generatorGI synthesizes images using the
predicted latent codes. The discriminatorDV is trained on both real and generated video sequences.
Right: For each generated video, the �rst and subsequent frames are sent to an image discriminator
D I . An encoder-like networkF calculates the features of synthesized images used to compute the
contrastive lossL contr with positive (same image content, but different augmentation, shown in
blue) and negative pairs (different image content and augmentation, shown in red).

Babenko, 2020; Shen & Zhou, 2020). We further consider the motion vectors in the latent space. By
disentangling the motion trajectories in an unsupervised fashion, we are able to transfer the motion
information from a video dataset to an image dataset in which no temporal information is available.

Contrastive Representation Learningis widely studied in unsupervised learning tasks (He et al.,
2020; Chen et al., 2020a;b; Hénaff et al., 2020; L̈owe et al., 2019; Oord et al., 2018; Misra & Maaten,
2020). Related inputs, such as images (Wu et al., 2018) or latent representations (Hjelm et al.,
2019), which can vary while training due to data augmentation, are forced to be close by minimizing
differences in their representation during training. Recent work (Park et al., 2020) applies noise-
contrastive estimation (Gutmann & Hyvärinen, 2010) to image generation tasks by learning the
correspondence between image patches, achieving performance superior to that attained when using
cycle-consistency constraints (Zhu et al., 2017; Yi et al., 2017). On the other hand, we learn an
image discriminator to create videos with coherent content by leveraging contrastive loss (Hadsell
et al., 2006) along with an adversarial loss (Goodfellow et al., 2014).

3 METHOD

In this section, we introduce our method for high-resolution video generation. Our framework is
built on top of apre-trainedimage generator (Karras et al., 2020a;b; Zhao et al., 2020a;b), which
helps to generate high-quality image frames and boosts the training ef�ciency with manageable com-
putational resources. In addition, with the image generator �xed during training, we can disentangle
video motion from image content, and enable video synthesis even when the image content and the
video motion come from different domains.

More speci�cally, our inference framework includes a motion generatorGM and an image generator
GI . GM is implemented with two LSTM networks (Hochreiter & Schmidhuber, 1997) and predicts
the latent motiontrajectoryZ = f z1; z2; � � � ; zn g, wheren is the number of frames in the synthe-
sized video. The image generatorGI can thus synthesize each individual frame from the motion
trajectory. The generated video sequence~v is given by~v = f ~x1; ~x2; � � � ; ~xn g. For each synthe-
sized frame~x t , we have~x t = GI (zt ) for t = 1 ; 2; � � � ; n. We also de�ne the real video clip as
v = f x1; x2; � � � ; xn g and the training video distribution aspv .

To train the motion generatorGM to discover the desired motion trajectory, we apply a video dis-
criminator to constrain the generated motion patterns to be similar to those of the training videos,
and an image discriminator to force the frame content to be temporally consistent. Our framework
is illustrated in Fig. 1. We describe each component in more detail in the following sections.
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3.1 MOTION GENERATOR

The motion generatorGM predicts consecutive latent codes using an input codez1 2 Z , where the
latent spaceZ is also shared by the image generator. For BigGAN (Brock et al., 2019), we samplez1
from the normal distributionpz . For StyleGAN2 (Karras et al., 2020b),pz is the distribution after
the multi-layer perceptron (MLP), as the latent codes within this distribution can be semantically
disentangled better than when using the normal distribution (Shen et al., 2020; Zhu et al., 2020).

Formally,GM includes an LSTM encoderLSTM enc, which encodesz1 to get the initial hidden state,
and a LSTM decoderLSTM dec, which estimatesn � 1 continuous hidden states recursively:

h1; c1 = LSTM enc(z1);
h t ; ct = LSTM dec(� t ; (h t � 1; ct � 1)) ; t = 2 ; 3; � � � ; n;

(1)

whereh andc denote the hidden state and cell state respectively, and� t is a noise vector sampled
from the normal distribution to model the motion diversity at timestampt.

Motion Disentanglement.Prior work (Tulyakov et al., 2018) appliesh t as the motion code for the
frame to be generated, while the content code is �xed for all frames. However, such a design re-
quires a recurrent network to estimate the motion while preserving consistent content from the latent
vector, which is dif�cult to learn in practice. Instead, we propose to use a sequence of motion resid-
uals for estimating the motion trajectory. Speci�cally, we model the motion residual as the linear
combination of a set of interpretable directions in the latent space (Shen & Zhou, 2020; Härkönen
et al., 2020). We �rst conduct principal component analysis (PCA) onm randomly sampled latent
vectors fromZ to get the basisV . Then, we estimate the motion direction from the previous frame
zt � 1 to the current framezt by usingh t andV as follows:

zt = zt � 1 + � � h t � V ; t = 2 ; 3; � � � ; n; (2)

where the hidden stateh t 2 [� 1; 1], and� controls the step given by the residual. With Eqn. 1
and Eqn. 2, we haveGM (z1) = f z1; z2; � � � ; zn g, and the generated video~v is given as~v =
GI (GM (z1)) .

Motion Diversity. In Eqn. 1, we introduce a noise vector� t to control the diversity of motion. How-
ever, we observe that the LSTM decoder tends to neglect the� t , resulting inmotion mode collapse,
meaning thatGM cannot capture the diverse motion patterns from training videos and generate dis-
tinct videos from one initial latent code with similar motion patterns for different sequences of noise
vectors. To alleviate this issue, we introduce a mutual information lossL m to maximize themutual
informationbetween the hidden vectorh t and the noise vector� t . With sim(u; v ) = uT v=kuk kvk
denoting the cosine similarity between vectorsu andv , we de�neL m as follows:

L m =
1

n � 1

nX

t =2

sim(H (h t ); � t ); (3)

whereH is a 2-layer MLP that serves as a mapping function.

Learning. To learn the appropriate parameters for the motion generatorGM , we apply a multi-scale
video discriminatorDV to tell whether a video sequence is real or synthesized. The discriminator is
based on the architecture of PatchGAN (Isola et al., 2017). However, we use 3D convolutional layers
in DV , as they can model temporal dynamics better than 2D convolutional layers. We divide input
video sequence into small 3D patches, and classify each patch as real or fake. The local responses
for the input sequence are averaged to produce the �nal output. Additionally, each frame in the input
video sequence is conditioned on the �rst frame, as it falls into the distribution of the pre-trained
image generator, for more stable training. We thus optimize the following adversarial loss to learn
GM andDV :

L D V = Ev � pv [logD v (v )] + Ez1 � pz [log(1 � DV (GI (GM (z1))))] : (4)

3.2 CONTRASTIVE IMAGE DISCRIMINATOR

As our image generator is pre-trained, we may use an image generator that is trained on a given
domain,e.g. images of animal faces (Choi et al., 2020), and learn the motion generator parameters
using videos from a different domain, such as videos of human facial expressions (Nagrani et al.,
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2017). With Eqn. 4 alone, however, we lack the ability to explicitly constrain the generated images
~x t j t> 1 to possess similar quality and content as the �rst image~x1, which is sampled from the image
space of the image generator and thus has high �delity. Hence, we introduce a contrastive image
discriminatorD I , which is illustrated in Fig. 1, to match both image quality and content between~x1
and~x t j t> 1.

Quality Matching. To increase the perceptual quality, we trainD I andGM adversarially by for-
warding~x t into the discriminatorD I and using~x1 as real sample and~x t j t> 1 as the fake sample.

L D I = Ez1 � pz [logD I (GI (z1))] + Ez1 � pz ;z t � GM (z1 ) j t> 1 [log(1 � D I (GI (zt )))] : (5)

Content Matching. To learn content similarity between frames within a video, we use the im-
age discriminator as a feature extractor and train it with a form of contrastive loss known as In-
foNCE (Oord et al., 2018). The goal is that pairs of images with the same content should be close
together in embedding space, while images containing different content should be far apart.

Given a minibatch ofN generated videosf ~v (1) ; ~v (2) ; � � � ; ~v (N ) g, we randomly sample one framet
from each video:f ~x (1)

t ; ~x (2)
t ; � � � ; ~x (N )

t g, and make two randomly augmented versions (~x ( ia )
t , ~x ( ib )

t )
for each frame~x ( i )

t , resulting in2N samples. (~x ( ia )
t , ~x ( ib )

t ) are positive pairs, as they share the same
content. (~x ( i �)

t , ~x ( j �)
t ) are all negative pairs fori 6= j .

Let F be an encoder network, which shares the same weights and architecture ofD I , but excluding
the last layer ofD I and including a 2-layer MLP as a projection head that produces the representation
of the input images. We have a contrastive loss functionL contr , which is the cross-entropy computed
across2N augmentations as follows:

L contr = �
NX

i =1

bX

� = a

log
exp(sim(F (~x ( ia )

t ); F (~x ( ib )
t ))=� )

P N
j =1

P b
� = a 1 [j 6= i ] (exp(sim( F (~x ( i� )

t ); F (~x ( j� )
t ))=� )

; (6)

where sim(�; �) is the cosine similarity function de�ned in Eqn. 3,1[j 6= i ] 2 f 0; 1g is equal to 1 iff
j 6= i , and� is a temperature parameter empirically set to0:07. We use a momentum decoder
mechanism similar to that of MoCo (He et al., 2020) by maintaining a memory bank to delete the
oldest negative pairs and update the new negative pairs. We apply augmentation methods including
translation, color jittering, and cutout (DeVries & Taylor, 2017) on synthesized images. With the
positive and negative pairs generated on-the-�y during training, the discriminator can effectively
focus on the content of the input samples.

The choice of positive pairs in Eqn. 6 is speci�cally designed for cross-domain video synthesis, as
videos of arbitrary content from the image domain is not available. In the case that images and
videos are from the same domain, the positive and negative pairs are easier to obtain. We randomly
select and augment two frames from a real video to create positive pairs sharing the same content,
while the negative pairs contain augmented images from different real videos.

Aside fromL contr , we also adopt the feature matching loss (Wang et al., 2018b)L f between the
generated �rst frame and other frames by changing theL 1 regularization to cosine similarity.

Full Objective. The overall loss function for training motion generator, video discriminator, and
image discriminator is thus de�ned as:

min
GM

(max
D V

L D V + max
D I

L D I ) + max
GM

(� m L m + � f L f ) + min
D I

(� contr L contr ) (7)

where� m , � contr , and� f are hyperparameters to balance losses.

4 EXPERIMENTS

In this section, we evaluate the proposed approach on several benchmark datasets for video genera-
tion. We also demonstrate cross-domain video synthesis for various image and video datasets.

4.1 VIDEO GENERATION

We conduct experiments on three datasets including UCF-101 (Soomro et al., 2012), FaceForen-
sics (R̈ossler et al., 2018), and Sky Time-lapse (Xiong et al., 2018) for unconditional video synthesis.
We use StyleGAN2 as the image generator. Training details can be found in Appx. B.
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Table 1: IS and FVD on UCF-101.

Method IS (" ) FVD (#)

VGAN 8.31� .09 -
TGAN 11.85� .07 -

MoCoGAN 12.42� .07 -
ProgressiveVGAN 14.56� .05 -

LDVD-GAN 22.91� .19 -
TGANv2 26.60� .47 1209� 28

DVD-GAN 27.38� .53 -

Ours 33.95� .25 700� 24

Table 2: FVD, ACD, and Human Preference
on FaceForensics.

Method FVD (#) ACD (#)

GT 9.02 0.2935

TGANv2 58.03 0.4914
Ours 53.26 0.3300

Method Human Preference (%)

Ours / TGANv2 73.6/ 26.4

UCF-101 is widely used in video generation. The dataset includes13; 320 videos of101 sport
categories. The resolution of each video is320� 240. To process the data, we crop a rectangle
with size of240� 240from each frame in a video and resize it to256� 256. We train the motion
generator to predict16 frames. For evaluation, we report Inception Score (IS) (Saito et al., 2020)
on 10; 000generated videos and Fr�echet Video Distance (FVD) (Unterthiner et al., 2018) on2; 048
videos. The classi�er used to calculate IS is a C3D network (Tran et al., 2015) that is trained on
the Sports-1M dataset (Karpathy et al., 2014) and �ne-tuned on UCF-101, which is the same model
used in previous works (Saito et al., 2020; Clark et al., 2019).

The quantitative results are shown in Tab. 1. Our method achieves state-of-the-art results for both
IS and FVD, and outperforms existing works by a large margin. Interestingly, this result indicates
that a well-trained image generator has learned to represent rich motion patterns, and therefore can
be used to synthesize high-quality videos when used with a well-trained motion generator.

FaceForensicsis a dataset containing news videos featuring various reporters. We use all the images
from 704training videos, with a resolution of256� 256, to learn an image generator, and sequences
of 16 consecutive frames to train motion generator. Note that our network can generate even longer
continuous sequences,e.g.64frames (Fig. 12 in Appx.), though only16frames are used for training.

Figure 2: Example generated videos from a model
trained on FaceForensics. We can generate natu-
ral and photo-realistic videos with various motion
patterns, such as eye blink and talking. Four ex-
amples show frames2, 7, 11, and16.

We show the FVD between generated and
real video clips (16 frames in length) for dif-
ferent methods in Tab. 2. Additionally, we
use the Average Content Distance (ACD) from
MoCoGAN (Tulyakov et al., 2018) to evalu-
ate the identity consistency for these human
face videos. We calculate ACD values over
256 videos. We also report the two metrics
for ground truth (GT) videos. To get FVD of
GT videos, we randomly sample two groups of
real videos and compute the score. Our method
achieves better results than TGANv2 (Saito
et al., 2020). Both methods have low FVD val-
ues, and can generate complex motion patterns
close to the real data. However, the much lower ACD value of our approach, which is close to GT,
demonstrates that the videos it synthesizes have much better identity consistency than the videos
from TGANv2. Qualitative examples in Fig. 2 illustrate different motions patterns learned from the
dataset. Furthermore, we perform perceptual experiments using Amazon Mechanical Turk (AMT)
by presenting a pair of videos from the two methods to users and asking them to select a more real-
istic one. Results in Tab. 2 indicate our method outperforms TGANv2 in 73.6% of the comparisons.

Sky Time-Lapseis a video dataset consisting of dynamic sky scenes, such as moving clouds. The
number of video clips for training and testing is35; 392and2; 815, respectively. We resize images
to 128� 128 and train the model to generate16 frames. We compare our methods with the two
recent approaches of MDGAN (Xiong et al., 2018) and DTVNet (Zhang et al., 2020), which are
speci�cally designed for this dataset. In Tab. 3, we report the FVD for all three methods. It is clear
that our approach signi�cantly outperforms the others. Example sequences are shown in Fig. 3.
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