
R2L: Distilling Neural Radiance Field to Neural Light
Field for Efficient Novel View Synthesis

Huan Wang1,† Jian Ren2 Zeng Huang2 Kyle Olszewski2
Menglei Chai2 Yun Fu1 Sergey Tulyakov2

1Northeastern University 2Snap Inc.
Project: https://snap-research.github.io/R2L

…

NeRF: Shallow MLP, Multi-forwards

x1 x2 x3

NeLF: Deep Residual MLP, Single forward

Camera ray
PSNR: 1.4dB↑
Speed: ~30x

FΘ

Gφ

1.0

1.5

NSVF (3.2)

Ours (9.88)(Dot size indicates relative model size)

−0.5

0.0
NeRF (1)

DONeRF-16-noGT (1.125)TermiNeRF (1)

KiloNeRF (16.21)
RSEN (1.17)

0 5 10 15 20 25

−4.0
AutoInt (1)

Speedup (x) over NeRF

∆
P

N
S

R
(d

B
)

ov
er

N
eR

F

(a) NeRF vs. our NeLF method (b) Speedup-PSNR-Model Size comparison

Figure 1: (a) Our neural light field (NeLF, bottom) method improves the rendering quality by 1.40
PSNR over neural radiance field (NeRF, top) [32] on the NeRF synthetic dataset, while being around
30× faster. (b) Our method achieves a more favorable speedup-PSNR-model size tradeoff than other
efficient novel view synthesis methods on the NeRF synthetic dataset. The number in the parentheses
indicates the model size relative to the baseline NeRF model used in each paper (best viewed in color).

Abstract
Recent research explosion on Neural Radiance Field (NeRF) shows the encourag-
ing potential to represent complex scenes with neural networks. One major draw-
back of NeRF is its prohibitive inference time: Rendering a single pixel requires
querying the NeRF network hundreds of times. To resolve it, existing efforts
mainly attempt to reduce the number of required sampled points. However, the
problem of iterative sampling still exists. On the other hand, Neural Light Field
(NeLF) presents a more straightforward representation over NeRF in novel view
synthesis – the rendering of a pixel amounts to one single forward pass without
ray-marching. In this work, we present a deep residual MLP network (88 layers)
to effectively learn the light field. We show the key to successfully learning such
a deep NeLF network is to have sufficient data, for which we transfer the knowl-
edge from a pre-trained NeRF model via data distillation. Extensive experiments
on both synthetic and real-world scenes show the merits of our method over other
counterpart algorithms. On the synthetic scenes, we achieve 26 ∼ 35× FLOPs
reduction (per camera ray) and 28 ∼ 31× runtime speedup, meanwhile delivering
significantly better (1.4 ∼ 2.8 dB average PSNR improvement) rendering quality
than NeRF without any customized implementation tricks.

†Preprint. This work was done when Huan was an intern at Snap Inc.

ar
X

iv
:2

20
3.

17
26

1v
1 

 [
cs

.C
V

] 
 3

1 
M

ar
 2

02
2

https://snap-research.github.io/R2L


Table 1: Method comparison between our R2L approach and recent efficient novel view synthesis
methods. Rendering speedup (measured by FLOPs reduction per ray and wall-time reduction) and
representation (Repre.) size are relative to the original NeRF [32]. Repre. size measures the required
storage of a neural network or cached files to represent a scene. ∆PSNR refers to the average PSNR
improvement (on the NeRF synthetic dataset) over the baseline NeRF used in each paper. Note, ours
and [4] are the only two neural light field methods here

Method FLOPs speedup↑ Wall-time speedup↑ Repre. size↓ Extra design ∆PSNR (dB)↑
NeRF [32] 1× 1× 1× No 0
PlenOctrees [55] - 3000× ∼ 600× No +0.02
DONeRF-8 [33] 27.60× - 1.125× Depth data -0.14
KiloNeRF [41] ∼ 0.6× 692× 16.21× Parallelism -0.01
NSVF [28] - ∼ 15× ∼ 3.2× No +0.74
AutoInt [27] - 3.22× ∼ 1× No -4.2
TermiNeRF [39] - 13.49× ∼ 1× No -0.46
RSEN [4] - 4.86×∗ 1.17× No +0.013
Ours 26 ∼ 35× 28 ∼ 31× 4 ∼ 10× No +1.40

1 Introduction

Inferring the representation of a 3D scene from 2D observations is a fundamental problem in com-
puter graphics and computer vision. Recent research innovations in implicit neural representa-
tions [10, 30, 34, 46] and differential neural renders [32] have remarkably advanced the solutions
to this problem. Neural radiance field (NeRF) learned by a simple Multi-Layer Perceptron (MLP)
network shows a great potential to store a complex scene into a compact neural network [32], thus
has inspired plenty of follow-up works [6, 11, 26, 56].

Despite the success of NeRF and its extensions, the drawback is still apparent. The rendering time
even for a single pixel is prolonged since the NeRF framework needs to aggregate the radiance
of hundreds of sampled points via alpha-composition. It requires hundreds of network forwards,
thus is prohibitively slow, especially on resource-constrained devices. One intuitive solution to
the problem is to reduce the model size of NeRF MLP. However, apparent quality degradation of
rendered images can be observed (e.g., reducing the network width by only half causes around 0.01
SSIM [53] drop in [40]) while the reduction of inference time is only limited. Other research efforts
focus on decreasing the number of sampled points [27, 33]. However, this does not fundamentally
resolve the sampling issue. Some work [33] demands extra depth information for training, which is
usually unavailable in most practical cases. Thus, a method that only requires 2D images as input,
represents the scene compactly, and enjoys a fast rendering speed with high image quality is highly
desired. This paper aims to present such a method that can achieve all the four goals simultaneously
by representing the scene as Neural Light Field (NeLF) instead of neural radiance field. In the neural
light field, ray origin and direction are directly mapped into its associated RGB values, avoiding the
need of sampling multiple points along the camera ray. Therefore, rendering a pixel requires only
one single query, making it much faster than the radiance scene representation.

The idea of NeLF is attractive; however, realizing it for representing complex real-world scenes
with better quality than NeRF is still challenging. Our first key technical innovation enabling this
is a novel network architecture design for the neural light field network. Specially, we propose a
deep (88 layers) residual MLP network with extensive residual MLP blocks. The deep network has
much greater expressivity than the shallow counterparts, thus can represent the light field faithfully.
Notably, since the debut of NeRF [32], its MLP-based network architecture is inherited with few
substantial changes [6, 33, 40, 41]. To our best knowledge, this is the first attempt to address the
NeRF rendering efficiency issue from the network design perspective. Although our network con-
tains more parameters than the original NeRF, we only need one single network forward to render
the color of a pixel, leading to much faster inference speed than NeRF.

The major technical problem is how to train the proposed deep residual MLP network. It is
well-known in machine learning that large networks hunger for large sample sizes to curb over-
fitting [23, 49]. We can barely train such a large network using only the original 2D images (which
are typically less than 100 in real-world applications). To tackle this problem, as the second key
technical innovation of this paper, we propose to distill the knowledge [8, 18] from a pretrained

2



NeRF model to our network, by rendering pseudo data from random views using the pre-trained
NeRF model. We name our method as R2L since we show distilling neural Radiance filed to neural
Light filed is an effective way to obtain a powerful NeLF network for efficient novel view synthesis.
Empirically, we evaluate our method on both synthetic and real-world datasets. On the synthetic
scenes, we achieve 26 ∼ 35× FLOPs reduction (28 ∼ 31× wall-time speedup) over the origi-
nal NeRF with significantly higher rendering quality. Comparison between ours and other efficient
novel view synthesis approaches is summarized in Tab. 1.

Overall, our contributions can be summarized into the following aspects:

• Methodologically, we present a brand-new deep residual MLP network aiming for com-
pact neural representation, fast rendering, without extra demand besides 2D images, for
efficient novel view synthesis. This is the first attempt to improve the rendering efficiency
via network architecture optimization.

• Our network represents complex real-world scenes as neural light fields. To resolve the data
shortage problem when training the proposed deep MLP network, we propose an effective
training strategy by distilling knowledge from a pre-trained NeRF model, which is the key
to enabling our method.

• Practically, our approach achieves 26 ∼ 35× FLOPs reduction (28 ∼ 31× wall-time
speedup) over the original NeRF with even better visual quality, which also performs fa-
vorably against existing counterpart approaches.

2 Related Work

Efficient neural scene representation and rendering. Since the debut of NeRF [33], many follow-
up works have been attempting to improve its efficiency. One major direction is to skip the empty
space and sample more wisely along a camera ray. NSVF [28] defines a set of voxel-bounded
implicit fields organized in a sparse voxel octree structure, which enables skipping empty space in
novel view synthesis. It achieves 10 times faster than NeRF at inference time with improved quality.
AutoInt [27] improves the rendering efficiency by reducing the number of evaluations along a ray
through learned partial integrals. DeRF [40] spatially decomposes the scene into Voronoi diagrams,
each learned by a small network. They achieve 3 times rendering speedup over NeRF with similar
quality. Similarly, KiloNeRF [41] also spatially decomposes the scene, but into thousands of regular
grids. Each of them is tackled by a tiny MLP network. Their work is similar to ours as a pre-
trained NeRF model is also used to generate pseudo targets for training. Differently, they generate
both the density and color as training targets, which makes their method still belong to the neural
radiance field; while our model only regresses the color, as a neural light field network. Besides,
their efficiency comes from the shrinkage of model size (thousands of tiny MLPs) while ours comes
from the fundamentally saving of sampling. DONeRF [33] is proposed recently to reduce sampling
through a depth oracle network learned with the ground-truth depth as supervision. It decimates the
sampled points from hundreds (i.e., 256 in the original NeRF) to only 4 to 16 while maintaining
comparable or even better quality. However, the depth oracle network is learned with ground-truth
depth as the target, which is typically unavailable in practice. Our method does not demand it, akin
to the original NeRF [32].

Another direction for faster NeRF rendering is to pre-compute and cache the representations per
the idea of trading memory for computational efficiency. In this line, FastNeRF [12] employs a
factorized architecture to independently cache the position-dependent and ray direction-dependent
outputs and achieves 3000 times faster than the original NeRF at rendering. Baking [15] precom-
putes and stores NeRF as a new representation (Sparse Neural Radiance Grid) that enables real-time
rendering on commodity hardware. We consider these as an orthogonal direction to our work since
they trade memory for speed while our method is to achieve faster rendering meanwhile keeping the
lightweight scene representation as the original NeRF.

Neural light field (NeLF). Light fields enjoy a long history as a scene representation in computer
vision and graphics [1, 2]. Levoy et al. [25] and Gortler et al. [13] introduced light fields in com-
puter graphics as 4D scene representation for fast image-based rendering. With them, novel view
synthesis can be realized by simply extracting 2D slices in the 4D light field, yet with two major
drawbacks. First, they tend to cause considerable storage costs. Second, it is hard to achieve a full
360◦ representation without concatenating multiple light fields. In the era of deep learning, neural

3



light fields based on convolutional networks have been proposed [7, 22, 31]. One recent neural light
field paper is Sitzmann et al. [44]. They employ Plücker coordinates to parameterize 360◦ light
fields. In order to ensure multi-view consistency, they propose to learn a prior over the 4D light
fields in a meta-learning framework. Despite intriguing ideas, their method is only evaluated on
toy datasets, not as comparable to NeRF [32] in representing complex real-world scenes. Another
recent NeLF work is RSEN [4]. To tackle the insufficient training data issue, they propose to learn
a voxel grid of local light fields, which are much simpler to learn than the global light field. In their
experiments, they also include a pre-trained NeRF teacher for regularization.

Our neural light field network is different from these in that, (1) methodologically, we propose a
deep residual MLP (88 layers) to learn the light field, while these NeLF works still employ the
NeRF-like shallow MLP networks (e.g., 6 layers in [44], 8 layers in [4]); (2) we propose to lever-
age a NeRF model to synthesize extra data for training, making our method a bridge from neural
radiance field to light field; (3) thanks to the abundant capacity, our R2L network can achieve better
rendering quality (e.g., our method can represent complex real-world scenes against [44]), or can
achieve better efficiency when maintaining the rendering quality (e.g., [4] achieves merely around
5× speedup vs. 30× speedup of ours over the baseline NeRF method).

Knowledge distillation (KD). The general idea of knowledge distillation is to guide the training
of a student model through a larger pre-trained teacher model. Pioneered by Buciluǎ et al. [8] and
later refined by Hinton et al. [18] for image classification, knowledge distillation has seen extensive
application in vision and language tasks [9, 20, 51, 52]. Many variants have been proposed regarding
the central question in knowledge distillation – how to define the knowledge that is supposed to be
transferred from the teacher to the student, examples including output distance [5, 18], internal
feature distance [42], feature map attention [57], feature distribution [36], activation boundary [17],
inter-sample distance relationship [29, 35, 38, 48], and mutual information [47]. The distillation
method in this work is to regress the output of the NeRF model with extra data labeled by the teacher
(akin to [5, 8]), which is the most straightforward way of distillation for the numerical target. Yet
we will show this simple scheme can work powerfully to train a deep neural light field network.

3 Methodology

3.1 Background: Neural Radiance Field (NeRF)

In the neural radiance field pioneered by Mildenhall et al. [32], the 3D scene is implicitly represented
by an MLP network, which learns to map the 5D coordinate (spatial location (x, y, z) and viewing
direction (θ, φ)) to the 1D volume density and 3D view-dependent emitted radiance at that spatial
location,

FΘ : R5 7→ R4, (1)

where F refers to an MLP neural network (parameterized by Θ) to represent a scene. For rendering,
the classic volume rendering technique [21] is adopted in NeRF to obtain the desired color for an
oriented ray. Volume rendering is differential thus making NeRF end-to-end trainable simply using
the captured 2D images as supervision. For novel view synthesis, given an oriented ray, NeRF first
samples several locations along the camera ray, predicts their emitted radiance by querying the MLP
network FΘ, and then aggregates the radiance together by alpha composition to output the final
color. As sampling at vacuum points contributes nothing to the final color, a sufficient number of
sampled points is critical to NeRF’s performance so as to cover the worthy locations (such as those
near the object surface). However, increased sampling incurs linearly increased query cost of the
MLP network.

3.2 R2L: Distilling NeRF to NeLF

On the other hand, a scene can also be represented as a light field instead of radiance field, parame-
terized by a neural network. The network Gφ learns a mapping function directly from a 5D oriented
ray to its target 3D RGB,

Gφ : R5 7→ R3. (2)

NeLF has several attractive advantages over NeRF. (1) Methodologically, it is more straightforward
for the task of novel view synthesis, in that the output of the NeLF network is already the wanted
color, while the output of a NeRF network is the radiance of a sampled point; the desired color has to

4



Linear ReLU

Element-Wise Sum
Residual Block

Input RGB…

Long skip connection

Repeated Residual MLP Blocks

(a) NeRF (top) vs. NeLF (ours, bottom) (b) Detailed architecture of our NeLF network

Camera ray

…

Deep Residual MLP

Shallow MLP

…

RGB

…

Concat

…

RGB

NeRF: Multi-forwards per ray

x1 x2 x3

NeLF: One single forward per ray

Ray origin
Alpha-composition

Figure 2: (a) Comparison between our proposed NeLF network (Deep Residual MLP, bottom) and
NeRF network (Shallow MLP, top). (b) Detailed architecture of the proposed deep light field net-
work, which employs extensive repeated residual MLP blocks.

been obtained through an extra step of ray marching (see Fig. 2(a)). (2) Practically, given the same
input ray (origin coordinate and direction), rendering in a light field simply amounts to a single query
of the light field function. It fundamentally obviates the need for point sampling along a ray (which
is the speed bottleneck in NeRF [32]), thus can be orders-of-magnitude faster than NeRF. Despite
these intriguing properties, not many successful attempts have crystallized NeLF with comparable
quality to NeRF up to date. To our best knowledge, only one recent NeLF method [4] achieves
comparable quality to NeRF, but its speedup is relatively limited (around 5×wall-time speedup). In
this paper, we propose a novel network architecture to make NeLF as effective as NeRF (meanwhile
being much faster). Intuitively, the light field is harder to learn than radiance field – radiance at
neighbor space locations does not change dramatically given the radiance field in the physical world
is typically continuous; while two neighbor rays can point to starkly different colors because of
occlusion. That is, the light field is intrinsically less smooth (sharply changing) than the radiance
field. To capture the inherently more complex light field, we need a more powerful network. Per
this idea, the 11-layer MLP network used in NeRF can hardly represent a complex light field by
our empirical observation (see Tab. 5). We thereby propose to employ a deep MLP network to
parameterize the above G function. Then, the foremost technical question is how to design the deep
network.

Network design. Different from the NeRF network, we propose to employ intensive residual
blocks [14] in our network. The resulted network architecture is illustrated in Fig. 2(b). Resid-
ual connections were shown critical to enable the much greater network depth in [14], which also
applies here for learning the light field. The merit of having a deeper network will be justified in
our experiments (see Fig. 6(b)). We also study an underperformance case in the Appendix when the
residual connections are not used in a deep MLP network.

Notably, enabling a deep network for neural radiance/light field parameterization is non-trivial.
Noted by DeRF [40], “there are diminishing returns in employing larger (deeper and/or wider)
networks”. As a result, notably, most NeRF follow-up works for improving rendering efficiency
(e.g., [40, 41, 33]) actually inherit the MLP architecture in NeRF with few substantial innovations.
To our best knowledge, we are the first to address the efficiency issue of NeRF through the net-
work architecture optimization perspective. Despite the residual structure is not new itself (due to
ResNets [14]), its necessity and potential have not been fully recognized and exploited in the NVS
task. Our paper is meant to make a step forward in this direction.

3.3 Synthesize Pseudo Data

Deep networks hunger for excessive data to be powerful. Unfortunately, this is not the case in novel
view synthesis, where a user typically captures fewer than 100 images. To overcome this problem,
we propose to employ a pre-trained NeRF model to synthesize extra data for training. This makes
our method a bridge from neural radiance field to neural light field.

We need to decide where to sample to synthesize the pseudo data to avoid unnecessary waste.
Specifically, with the original training data (images and their associated camera poses), we know

5



x! x"
Ray origin

… x!#
near

x! x" x!#

train points

…
far

test points
Middle position
of the test points

randomly sample

Figure 3: Illustration of the point sampling in training and testing of our method

the bounding box of the camera locations and their orientations. Then we randomly sample the ray
origins (xo, yo, zo) and normalized directions (xd, yd, zd) obeying a uniform distribution U within
the bounding box to make a 6D input as follows,

xo ∼ U(xmin
o , xmax

o ), yo ∼ U(ymin
o , ymax

o ), zo ∼ U(zmin
o , zmax

o ),

xd ∼ U(xmin
d , xmax

d ), yd ∼ U(ymin
d , ymax

d ), zd ∼ U(zmin
d , zmax

d ),
(3)

where the viewing bounding box can be inferred from the training data. An example illustration
of the pseudo data origins and directions in our method is shown in our Appendix. Note, since we
can control the generated data, we explicitly demand the pseudo data completely cover the original
training data, implying they are in the same domain, which is critical to the performance.

For a trained NeRF model FΘ∗ , the target RGB value can be queried as:

(r̂, ĝ, b̂) = FΘ∗(xo, yo, zo, xd, yd, zd), (4)

where Θ∗ stands for the converged model parameters. Then a slice of training data is simply a vector
of these 9 numbers: (xo, yo, zo, xd, yd, zd, r̂, ĝ, b̂). To have an effective neural light field network
FΘ, we feed abundant pseudo data into the proposed deep R2L network and train it by the MSE loss
function,

L = MSE(Gφ(xo, yo, zo, xd, yd, zd), (r̂, ĝ, b̂)). (5)

3.4 Ray Representation and Point Sampling

It is critical to have a proper representation of a ray in NeLF, e.g., in [44], they use Plücker coordi-
nates to parameterize 360◦ light fields. In this work, we use a much simpler way of representation
– we simply concatenate the spatial coordinates of K sampled points along a ray to form an input
vector (3K-d), fed into the NeLF network. Mathematically, we need at least two points to define a
ray. More points will make the representation more precise. In this paper, we choose K = 16 points
(based on our empirical study) along a ray. A critical design here is that we expect the network not
to overfit the K points but to capture the underlying ray information. Thus, during training the K
points are randomly sampled along the ray using the stratified sampling (same as NeRF [32], see
Fig. 3). This design is critical to generalization (in our Appendix, we will show the performance
drops significantly if the K points are fixed during training). During testing, the K points are evenly
spaced.

3.5 Training with Hard Examples

Given that we randomly sample the camera locations and orientations, the rays are likely to point to
the trivial parts of a scene (e.g., the white background of a synthetic scene). Also, during training,
some easy-to-regress colors will be well-learned early. Feeding these pixels again to the network
barely increases its knowledge. We thus propose to tap into the idea of hard examples [16, 43].
That is, we want the network to pay more attention to the rays that are harder to regress (typically
corresponding to the high-frequency details) during learning.

Specially, we maintain a hard example pool. A harder example is defined by a larger loss (Eq. (5)).
In each iteration, we sort the losses for each sample in a batch in ascending order and add the top
r (a pre-defined percentage constant) into the hard example pool. Meanwhile, in each iteration, the
same amount r of hard examples are randomly picked out of the pool to augment the training batch.
This design can accelerate the network convergence significantly as we will show in the experiments
(see Fig. 6).

6



Table 2: PSNR↑ and SSIM↑ on the NeRF synthetic dataset (Realistic Synthetic 360◦) and real-
world dataset (Real Forward-Facing). Training with pseudo and real data (ours-2) gives us better
results. Our R2L network here is W256D88. †KiloNeRF adopts Empty Space Skipping and Early
Ray Termination, so the FLOPs is scene-by-scene. We estimate the average FLOPs based on the
description in the paper. The best results are in red, second best in blue

Method Storage (MB) FLOPs (M) Synthetic Real-world
PSNR↑ SSIM↑ PSNR↑ SSIM↑

Teacher NeRF [32] 2.4 303.82 30.47 0.9925 27.68 0.9725
Ours-1 (Pseudo data) 23.7 11.79 30.48 (+0.01) 0.9939 27.58 (-0.10) 0.9722
Ours-2 (Pseudo + real data) 23.7 11.79 31.87 (+1.40) 0.9950 27.79 (+0.11) 0.9729
Teacher NeRF in [41] 2.4 303.82 31.01 0.95 - -
KiloNeRF [41] 38.9 ∼500† 31.00 (-0.01) 0.95 - -
Teacher NeRF in [4] 4.6 ∼ 300 - - 27.928 0.9160
RSEN [4] 5.4 ∼ 60 - - 27.941 (+0.013) 0.9161

3.6 Implementation Details

Our R2L method can lead to different networks under different FLOPs budgets. In this paper,
we mainly have two: 6M and 12M FLOPs (per ray). They result in a bunch of networks: 12M:
W256D88, 6M: W181D88, W256D44, W363D22 (W stands for width, D for depth). Obviously, a
larger network is expected to deliver better performance, so W256D88 is used for obtaining better
quality; ablation studies will be conducted on the 6M-budget networks since they are faster to train.
Following NeRF [32], positional encoding [50] is also used to enrich the input information.

4 Experiments

Datasets. We show experiments on the following datasets:

• NeRF datasets [32]. We evaluate our method on two datasets: synthetic dataset (Realistic
Synthetic 360◦) and real-world dataset (Real Forward-Facing). Realistic Synthetic 360◦ contains
path-traced images of 8 objects that exhibit complicated geometry and realistic non-Lambertian
materials. 100 views of each scene are used for training and 200 for testing, with a spatial
resolution of 800× 800. Real Forward-Facing also contains 8 scenes, captured with a handheld
cellphone. There are 20 to 62 images for each scene with 1/8 held out for testing. All images
have a resolution of 1008× 756.

• DONeRF dataset includes their synthetic data. Images are rendered using Blender and their
Cycles path tracer to render 300 images for each scene, which are split into train/validation/test
sets at a 70%, 10%, 20% ratio.

Training settings. All images in the synthetic dataset are down-sampled by 2× during training
and testing. The original NeRF model is trained with a batch size of 1, 024 and initial learning
rate as 5 × 10−4 (decayed during training) for 200k iterations. We synthesize 10k images using
the pre-trained NeRF model. Our proposed R2L model is trained for 600k iterations with the same
learning rate schedule. The rays in a batch are randomly sampled from different images so that
they do not share the same origin. We empirically observe that the batch diversity is important to
achieve superior performance. Adam optimizer [24] is employed for all training. We use PyTorch
1.9 [37] to implement our method, referring to the widely-used NeRF PyTorch code*. Experiments
are conducted with 8 NVIDIA V100 GPUs. Our code and trained models will be released†.

Comparison methods. We compare with with the original NeRF [32] to show that we can achieve
significantly better rendering quality while being much faster. Meanwhile, we also compare with
DONeRF [33], NSVF [28], and NeX [54] since they also target efficient NVS as we do. Other
efficient NVS works such as AutoInt [27] and X-Fields [7] have been shown less favorable than
RSEN [4]. Therefore, we only compare with RSEN [4]. KiloNeRF [41], another closely related

*https://github.com/yenchenlin/nerf-pytorch
†https://github.com/snap-research/R2L

7

https://github.com/yenchenlin/nerf-pytorch
https://github.com/snap-research/R2L


Lego (a) GT (b) NeRF [32] (c) Ours-1 (d) Ours-2

Hotdog (a) GT (b) NeRF [32] (c) Ours-1 (d) Ours-2

Figure 4: Visual comparison between our R2L network (W256D88) and NeRF on the synthetic
scene Lego and Hotdog. Ours-1 is trained sorely on pseudo data, ours-2 on pseudo + real data.
Please refer to our Appendix for the visual comparison on the real-world dataset

Table 3: PSNR↑ and FLIP↓ comparison on the DONeRF synthetic dataset. All the PSNR and FLIP
results except ours and NeRF are directly cited from the DONeRF paper since we are using exactly
the same dataset here. Training with pseudo and real data (ours-2) gives us better results. The best
results are in red, second best in blue

Method Storage (MB) FLOPs (M) PSNR↑ FLIP↓
Teacher NeRF (log+warp) 3.2 211.42 32.67 0.070
NSVF-large [28] 8.3 187.52 30.01 (-2.66) 0.078
NeX-MLP [54] 89.0 42.71 30.55 (-2.12) 0.076
DONeRF-16-noGT [33] 3.6 14.29 32.25 (-0.42) 0.065
DoNeRF-8 [33] 3.6 7.66 32.50 (-0.17) 0.064
Ours-1 (Pseduo data) 12.1 6.00 32.67 (+0.00) 0.071
Ours-2 (Pseduo + real data) 12.1 6.00 35.45 (+2.78) 0.047

work apart from RSEN, will also be compared to. Similar to [4], we do not compare to baking-
based methods [15, 55, 12]) as they trade memory footprint for speed while our method aims to
maintain the compact representation.

4.1 NeRF Synthetic and Real-World Dataset

The quantitative comparisons (PSNR, SSIM [53]) on the NeRF synthetic and real-world dataset are
presented in Tab. 2. Visual comparison is shown in Fig. 4. (1) Using the pseudo data alone, our
R2L network achieves comparable performance to the original ray-marching NeRF model either
quantitatively or qualitatively, with only 1/26 FLOPs. The blurry parts of NeRF results usually also
appear on our results, since our model learns from the data generated by the NeRF teacher model.
(2) With the original data included for training, our R2L network significantly improves the test
PSNR by 1.40 over the teacher NeRF model. This means that the performance of our method is
not upper-bounded by the teacher model. (3) For the two related works KiloNeRF and RSEN, their
baseline NeRF models have different PSNRs due to various different settings (e.g., KiloNeRF tests
on 800 × 800 images while ours on 400 × 400 images), so the PSNR results cannot be directly
compared. Instead, we compare the PSNR change over the baseline NeRFs. KiloNeRF achieves
0.01 dB PSNR drop vs. ours 1.40 dB PSNR boost. RSEN improves the PSNR on the much more
challenging real-world dataset marginally (by 0.013 dB). In comparison, our improvement is more
significant (0.11 dB), and with much fewer FLOPs.

8



Pavillon (a) GT (b) NeRF (c) DONeRF-8 (d) Ours-2

Barbershop (a) GT (b) NeRF (c) DONeRF-8 (d) Ours-2

Figure 5: Visual comparison of ours, NeRF [32], DONeRF [33] on the DONeRF dataset

Table 4: Average time (s) comparison among our R2L network (W181D88), DONeRF, and NeRF.
The benchmark is conducted on the platforms of two NVIDIA GPU and one Intel CPU under the
same hardware and software. The speedup of ours and DONeRF is relative to the running time of
NeRF. Results are averaged by 60 frames

Method FLOPs (M) GeForce 2080Ti Tesla V100 CPU

NeRF 211.42 5.9343 4.9902 142.2612
DONeRF-16 14.29 (14.79×) 0.4162 (14.26×) 0.3524 (14.16×) 9.9344 (14.32×)
Ours 6.00 (35.24×) 0.2103 (28.22×) 0.1629 (30.63×) 5.0198 (28.34×)

4.2 DONeRF Synthetic Dataset

DONeRF [33] achieves fast rendering using ground-truth depth for training. However, the ground-
truth depth is not available in most practical cases. As a remedy, they propose to use a pre-trained
NeRF model to estimate depth as a proxy for the ground-truth depth. The approach of DONeRF
without ground-truth depth (e.g., DONeRF-16-noGT) is very relevant to ours since we both do not
require the ground-truth depth and employ a pre-trained NeRF model for help. Thus, we compare
with it using the synthetic dataset collected by the DONeRF paper.

The quantitative results (PSNR and FLIP [3]) are presented in Tab. 3. (1) Trained purely with pseudo
data, our method already outperforms DONeRF-16-noGT and DONeRF-8 (which even demands
the ground-truth depth as input). (2) Similar to the case (Tab. 2) on the NeRF synthetic dataset,
including the original real images for training significantly boosts the performance, by 2.78 dB.
This improvement is even more obvious than the case in Tab. 2. We think the reason is that the
DONeRF synthetic dataset has more training images (210 images) than the NeRF synthetic dataset
(100 images). These real images are especially informative. Thus, more of them will lead to quality
improvement.

Visual results are presented in Fig. 5, where our method delivers better visual quality than the base-
line NeRF. In the scene Pavillon and Barbershop, our R2L network achieves better rendering
quality than DONeRF-8 despite not using the ground-truth depth. Particularly note the reflection
surfaces (e.g., water in Pavillon and mirror in Barbershop), DONeRF cannot learn the reflection
surfaces well because the ground-truth depth does not apply to the depth in the reflections, while our
method (along with NeRF) still performs well.

Actual speed comparison. We further report the benchmark results of wall-time speed in Tab. 4
to demonstrate the FLOPs reduction is well-aligned with actual speedup. Our R2L network
(W181D88) is 28 ∼ 31× faster than NeRF and 2× faster than DONeRF-16-noGT.

9



Table 5: Ablation study of different network and data schemes when learning a light field. Scene:
Lego. All models are trained for 200k iterations

Network Data Train PSNR (dB) Test PSNR (dB)

NeRF [32] Original (0.1k imgs) 25.61 19.81
NeRF+dropout [45] Original (0.1k imgs) 25.56 19.83
NeRF+BN [19] Original (0.1k imgs) 25.43 19.76
NeRF [32] Pseudo (10k imgs) 23.82 26.67
R2L (W181D88) Pseudo (10k imgs) 28.38 29.50
R2L (W181D88) Pseudo + Original (10.1k imgs) 29.85 30.09

0 50 100 150 200

Iteration (k)

20

22

24

26

28

30

P
S

N
R

(d
B

)

W363D22 (test)

W363D22 (train)

W256D44 (test)

W256D44 (train)

W181D88 (test)

W181D88 (train)

W128D178 (test)

W128D178 (train)

0 25 50 75 100 125 150 175 200

Iteration (k)

16

18

20

22

24

26

28

30

P
S

N
R

(d
B

)

w/o residuals (test)

w/o residuals (train)

w/ residuals (test)

w/ residuals (train)

(a) Depth-width tradeoff (b) With vs. without residuals

0 50 100 150 200

Iteration (k)

20

22

24

26

28

30

P
S

N
R

(d
B

)

S=0.1k (test)

S=0.1k (train)

S=0.5k (test)

S=0.5k (train)

S=1k (test)

S=1k (train)

S=2.5k (test)

S=2.5k (train)

S=5k (test)

S=5k (train)

S=10k (test)

S=10k (train)

0 50 100 150 200

Iteration (k)

20

22

24

26

28

30

P
S

N
R

(d
B

)

r=0 (test)

r=0 (train)

r=0.1 (test)

r=0.1 (train)

r=0.2 (test)

r=0.2 (train)

r=0.3 (test)

r=0.3 (train)

(c) Pseudo sample size (d) Hard example ratio

Figure 6: Ablation studies. All networks are trained for 200k iterations, scene: Lego. Test PSNRs
are plotted with dashed lines; train PSNRs are plotted with solid lines. (a) PSNR comparison
of different network depth and width designs under (nearly) the same FLOPs and Params bud-
get: W363D22 (FLOPs: 6.00M, Params: 3.01M), W256D44 (FLOPs: 6.02M, Params: 3.02M),
W181D88 (FLOPs: 6.00M, Params: 3.02M), W128D178 (FLOPs: 6.02M, Params: 3.04M). (b)
PSNR comparison between two network designs: using residuals or not for the deep R2L network.
(c) PSNR comparison under different pseudo sample sizes. Default: S = 10k. (d) PSNR compari-
son under different hard example ratio r ∈ {0, 0.1, 0.2, 0.3}. Default: r = 0.2

4.3 Ablation Study

More data and deep network are critical. In Tab. 5, we show the results of using the original
11-layer NeRF network to learn a light field on scene Lego. (1) Because of the severely insufficient
data (only 0.1k training images), the network overfits to the training data while with only 19.81 test
PSNR. Note, this overfitting cannot be alleviated by common regularization techniques in image
classification like dropout [45], BN [19]. Only when the data size is greatly inflated (using the
pseudo data) from 0.1k to 10k, can we see a significant test PSNR improvement (from 19.81 to
26.67). This shows the (abundant) pseudo data is indispensable. (2) Compare our R2L to NeRF
at the same setting of 10k pseudo images, our network design improves test PSNR by around 3
(from 26.67 to 29.50), which is a significant boost in terms of rendering quality. This justifies the

10



necessity of our deep network design. Another sign encouraging us to use deep networks is shown
in Fig. 6(a), where we can consistently see performance gains when trading width for depth under
the same FLOPs budget.

Ablation of residuals in our R2L network. Although the original NeRF network also employs
skip connections (to add ray directions as input), it can hardly be considered as a typical residual
network [14] in fact, as they do not use residuals in the internal layers. In comparison, we promote
employing extensive residual blocks in the internal layers. Its necessity is justified by Fig. 6(b). As
seen, without residuals, the network is barely trainable.

Ablation of pseudo sample size. The effect of pseudo sample size is of particular interest. As
shown in Fig. 6(c), 100 images (see the S = 0.1k) are not enough to train our deep R2L network
– note the test PSNR saturates early at around 50k iterations while its train PSNR keeps arising
sharply. This is a typical case of overfitting, caused by the over-parameterized model not being fed
with enough data. In contrast, with more data (see the cases of S ≥ 0.5k), the train PSNR is held
down and the test PSNR keeps arising. We observe no significant improvement starting from around
5k images.

Ablation of hard example ratio. Here we vary the hard example ratio r and see how it affects
the performance. To make a fair comparison, we keep the training batch size always the same
(98, 304 rays per batch) when varying r. As shown in Fig. 6(d), using hard examples in each batch
significantly improves the network learning in either train PSNR (i.e., better optimization) or test
PSNR (i.e., better generalization) against the case of r = 0. There is no significant difference
between hard example ratio r = 0.1, 0.2, and 0.3. In our experiments, we simply use a setting as
r = 0.2.

5 Conclusion

We present the first deep neural light field network that can represent complex synthetic and real-
world scenes. Starkly different from existing NeRF-like MLP networks, our R2L network is featured
by an unprecedented depth and extensive residual blocks. We show the key to training such a deep
network is abundant data, while the original captured images are barely sufficient. To resolve this, we
propose to adopt a pre-trained NeRF model to synthesize excessive pseudo samples. With them, our
proposed neural light field network achieves more than 26 ∼ 35× FLOPs reduction and 28 ∼ 31×
wall-time acceleration on the NeRF synthetic dataset, with rendering quality improved significantly.

Future work. (1) Our method is only evaluated on static scenes in this paper akin to NeRF [32].
Extension to dynamic scenes (e.g., [26]) is a worthy future direction. (2) Our R2L networks still
demand a pre-trained NeRF model to synthesize pseudo data. This said, the proof-of-concept R2L
networks already show the encouraging potential of NeLF representations. Completely avoiding the
NeRF teacher is an obvious next step for our method.

References

[1] Edward H Adelson, James R Bergen, et al. The plenoptic function and the elements of early
vision, volume 2. MIT Press, 1991. 3

[2] Edward H Adelson and John YA Wang. Single lens stereo with a plenoptic camera. TPAMI,
14(2):99–106, 1992. 3

[3] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Åström,
and Mark D Fairchild. Flip: A difference evaluator for alternating images. In Proceedings of
the ACM in Computer Graphics and Interactive Techniques, 2020. 9

[4] Benjamin Attal, Jia-Bin Huang, Michael Zollhoefer, Johannes Kopf, and Changil Kim. Learn-
ing neural light fields with ray-space embedding networks. arXiv preprint arXiv:2112.01523,
2021. 2, 4, 5, 7, 8

[5] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NeurIPS, 2014. 4

[6] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla,
and Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. arXiv preprint arXiv:2103.13415, 2021. 2

11



[7] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel. X-fields: Im-
plicit neural view-, light-and time-image interpolation. ACMTOG, 39(6):1–15, 2020. 4, 7

[8] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
SIGKDD, 2006. 2, 4

[9] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning
efficient object detection models with knowledge distillation. In NeurIPS, 2017. 4

[10] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In CVPR,
2019. 2

[11] Frank Dellaert and Lin Yen-Chen. Neural volume rendering: Nerf and beyond. arXiv preprint
arXiv:2101.05204, 2020. 2

[12] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin.
Fastnerf: High-fidelity neural rendering at 200fps. arXiv preprint arXiv:2103.10380, 2021. 3,
8

[13] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. The lumigraph.
In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques,
1996. 3

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016. 5, 11

[15] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec.
Baking neural radiance fields for real-time view synthesis. arXiv preprint arXiv:2103.14645,
2021. 3, 8

[16] Joao F Henriques, Joao Carreira, Rui Caseiro, and Jorge Batista. Beyond hard negative mining:
Efficient detector learning via block-circulant decomposition. In CVPR, 2013. 6

[17] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge transfer via
distillation of activation boundaries formed by hidden neurons. In AAAI, 2019. 4

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
In NeurIPS Workshop, 2014. 2, 4

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, 2015. 10

[20] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019. 4

[21] James T Kajiya and Brian P Von Herzen. Ray tracing volume densities. SIGGRAPH,
18(3):165–174, 1984. 4

[22] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based view
synthesis for light field cameras. ACM Transactions on Graphics, 35(6):1–10, 2016. 4

[23] Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction to compu-
tational learning theory. MIT Press, 1994. 2

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015. 7

[25] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the Annual Conference
on Computer Graphics and Interactive Techniques, 1996. 3

[26] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for
space-time view synthesis of dynamic scenes. In CVPR, 2021. 2, 11

[27] David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for
fast neural volume rendering. In CVPR, 2021. 2, 3, 7

[28] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse
voxel fields. In NeurIPS, 2020. 2, 3, 7, 8, 15

[29] Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming Hu, Yangxi Li, and Yunqiang
Duan. Knowledge distillation via instance relationship graph. In CVPR, 2019. 4

12



[30] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. Occupancy networks: Learning 3d reconstruction in function space. In CVPR, 2019.
2

[31] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi
Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis
with prescriptive sampling guidelines. ACM Transactions on Graphics, 38(4):1–14, 2019. 4

[32] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 18

[33] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller, Chakravarty
R. Alla Chaitanya, Anton S. Kaplanyan, and Markus Steinberger. DONeRF: Towards Real-
Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks. Computer
Graphics Forum, 2021. 2, 3, 5, 7, 8, 9, 15

[34] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In CVPR,
2019. 2

[35] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In
CVPR, 2019. 4

[36] Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic
knowledge transfer. In ECCV, 2018. 4

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, 2019. 7

[38] Baoyun Peng, Xiao Jin, Jiaheng Liu, Dongsheng Li, Yichao Wu, Yu Liu, Shunfeng Zhou, and
Zhaoning Zhang. Correlation congruence for knowledge distillation. In ICCV, 2019. 4

[39] Martin Piala and Ronald Clark. Terminerf: Ray termination prediction for efficient neural
rendering. In ”3DV”, 2021. 2

[40] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, and Andrea Tagliasacchi.
Derf: Decomposed radiance fields. In CVPR, 2021. 2, 3, 5

[41] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural
radiance fields with thousands of tiny mlps. In ICCV, 2021. 2, 3, 5, 7

[42] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015. 4

[43] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detec-
tors with online hard example mining. In CVPR, 2016. 6

[44] Vincent Sitzmann, Semon Rezchikov, William T Freeman, Joshua B Tenenbaum, and Fredo
Durand. Light field networks: Neural scene representations with single-evaluation rendering.
In NeurIPS, 2021. 4, 6

[45] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15(1):1929–
1958, 2014. 10

[46] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3d shapes. In CVPR, 2021. 2

[47] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In
ICLR, 2020. 4

[48] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In CVPR, 2019.
4

[49] Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Business
Media, 2013. 2

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 7

13



[51] Huan Wang, Yijun Li, Yuehai Wang, Haoji Hu, and Ming-Hsuan Yang. Collaborative distilla-
tion for ultra-resolution universal style transfer. In CVPR, 2020. 4

[52] Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual
intelligence: A review and new outlooks. TPAMI, 2021. 4

[53] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. TIP, 13(4):600–612, 2004. 2, 8

[54] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn Suwa-
janakorn. Nex: Real-time view synthesis with neural basis expansion. In CVPR, 2021. 7, 8,
15

[55] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees
for real-time rendering of neural radiance fields. In ICCV, 2021. 2, 8

[56] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields
from one or few images. In CVPR, 2021. 2

[57] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In ICLR, 2017. 4

14



6 Appendix

6.1 Overview

In this appendix, we provide:

• the detailed per-scene quantitative results (PSNR, SSIM, FLIP, etc.) for NeRF and DON-
eRF datasets evaluated in the main paper (Sec. 6.2);

• more ablation studies about the number of sampled points and using or not using residuals
in our R2L network (Sec. 6.3);

• a visual depiction of the pseudo data sampling used in our method (Sec. 6.4);
• the visual comparison on the NeRF real-world dataset, and rendered videos on both NeRF

and DONeRF datasets (Sec. 6.5).

6.2 Per-Scene Quantitative Results

The detailed per-scene quantitative results (PSNR, SSIM, FLIP) for NeRF and DONeRF datasets
are presented in Tabs. 6 and 7.

Table 6: Per-scene PSNR↑ and SSIM↑ comparison on the NeRF synthetic dataset (Realistic Syn-
thetic 360◦, Row 1) and real-world dataset (Real Forward-Facing, Row 2). Ours-1 is trained sorely
on pseudo data and Ours-2 is trained on pseudo + real data. The best results are in red, second best
in blue

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NeRF [32] 33.90 0.9985 25.56 0.9875 28.88 0.9958 34.64 0.9976 31.42 0.9922 29.22 0.9898 30.84 0.9950 29.30 0.9834 30.47 0.9925
Ours-1 34.02 0.9985 25.56 0.9876 28.48 0.9956 34.95 0.9977 31.26 0.9922 29.34 0.9903 31.02 0.9953 29.20 0.9834 30.48 0.9939
Ours-2 36.71 0.9992 26.03 0.9883 28.63 0.9957 38.07 0.9987 32.53 0.9939 30.20 0.9920 32.80 0.9969 29.98 0.9855 31.87 0.9950

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NeRF [32] 33.07 0.9915 26.86 0.9815 22.40 0.9485 32.61 0.9969 21.29 0.9344 28.22 0.9730 28.10 0.9815 28.86 0.9897 27.68 0.9725
Ours-1 32.98 0.9916 26.87 0.9850 22.46 0.9491 32.61 0.9969 20.90 0.9287 28.25 0.9732 28.06 0.9811 28.50 0.9885 27.58 0.9722
Ours-2 33.30 0.9918 26.87 0.9850 22.71 0.9514 32.71 0.9970 21.01 0.9292 28.67 0.9747 28.12 0.9815 28.95 0.9894 27.79 0.9729

Table 7: Per-scene PSNR↑ and FLIP↓ of different methods on the DONeRF synthetic dataset. All
the PSNR and FLIP results except ours and NeRF are directly cited from the DONeRF paper since
we are using exactly the same dataset here

Method Storage (MB) FLOPs (M) San Miguel Pavillon Classroom Bulldozer Forest Barbershop Average
PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP

NeRF (log+warp) 3.2 211.42 28.96 0.074 32.82 0.090 35.33 0.050 36.85 0.034 28.11 0.103 33.92 0.052 32.67 0.070
NSVF-large [28] 8.3 187.52 25.73 0.097 30.48 0.099 34.06 0.051 33.14 0.042 26.05 0.119 30.61 0.061 30.01 0.078
NeX-MLP [54] 89.0 42.71 30.68 0.060 30.41 0.102 34.10 0.046 34.03 0.046 24.65 0.125 29.45 0.075 30.55 0.076
DONeRF-16-noGT [33] 3.6 14.29 27.70 0.078 32.22 0.088 34.63 0.049 35.41 0.040 30.74 0.079 32.80 0.057 32.25 0.065
DONeRF-8 [33] 3.6 7.66 28.65 0.071 31.46 0.096 35.23 0.048 35.88 0.039 32.09 0.070 31.72 0.060 32.50 0.064
Ours-1 12.1 6.00 29.29 0.073 32.96 0.089 35.44 0.051 36.38 0.037 28.14 0.104 33.83 0.053 32.67 0.071
Ours-2 12.1 6.00 31.37 0.057 34.10 0.052 38.96 0.034 38.01 0.030 34.18 0.064 36.05 0.041 35.45 0.047

15



6.3 More Ablation Studies

(1) Effect of the number of sampled points and sample positions. Although our method is a light
field network, which essentially is irrelevant to point sampling, we propose converting the ray origin
and direction to multiple point coordinates along the ray as a simple and effective representation
of the ray. We sample K points along each ray and concatenate all the K points together as a
whole input to the proposed R2L network (see Sec. 3.4 in the main paper). The ablation study of
the number of sampled points is shown in Fig. 7(a). Too few (e.g., 4 and 8) or too many (e.g., 64)
sampled points are harmful to the performance. In our paper, we simply set K to 16.

We mentioned in Sec. 3.4 that during training the K points are randomly sampled, which is critical
to curbing overfitting. By our empirical study, using fixed (vs. random) sample positions will lead to
dramatic test PSNR degradation (by more than 6 dB) on the scene Lego.

(2) Residuals are critical to performance. In our paper, we find that the residuals are critical to
the strong performance of our R2L network. Here we employ a network with the same design as
W181D88, only removing the skip connections in the internal blocks. Its performance compared to
the residual W181D88 is shown in Fig. 7(b). As seen, without residuals (black lines), the network
saturates very early, and dramatically underperforms its counterpart with residuals (red lines).

0 50 100 150 200

Iteration (k)

18

20

22

24

26

28

30

P
S

N
R

(d
B

)

4 points (test)

4 points (train)

8 points (test)

8 points (train)

16 points (test)

16 points (train)

32 points (test)

32 points (train)

64 points (test)

64 points (train)

0 25 50 75 100 125 150 175 200

Iteration (k)

16

18

20

22

24

26

28

30

P
S

N
R

(d
B

)

w/o residuals (test)

w/o residuals (train)

w/ residuals (test)

w/ residuals (train)

(a) Effect of number of sampled points (b) Effect of residuals in our R2L model

Figure 7: More ablation studies. All the networks are trained for 200k iterations on the scene Lego.
Test PSNRs are plotted with dashed lines; train PSNRs are plotted with solid lines. (a) Test PSNR
comparison of different numbers of sampled points in our R2L network (W181D88). Default: 16
points (blue lines). (b) PSNR comparison between using residuals (red lines) and not using residuals
(black lines) in our R2L network (W181D88)

16



6.4 Visual Illustration of Ray Sampling in R2L Method

Given the training data of a scene, the viewing origin and direction bounding boxes can be inferred
from the training data. In our R2L method, we randomly sample rays within the ray origin and
direction bounding boxes. This is shown in Fig. 8. Note, since the pseudo data is synthetic, we have
complete control over how the pseudo data is synthesized. We thereby explicitly demand the pseudo
data completely cover the original training data, implying they are in the same domain, which is
critical to the performance.

X axis

0.4
0.2

0.0
0.2

0.4

Y a
xis

0.15
0.10

0.05
0.00

0.05
0.10

0.15
Z 

ax
is

0.06
0.04
0.02
0.00
0.02
0.04

X axis

0.2
0.1

0.0
0.1

0.2

Y a
xis

0.06
0.04

0.02
0.00

0.02
0.04

0.06

Z 
ax

is

0.0
0.2
0.4
0.6
0.8
1.0
1.2

X axis

4 3 2 1 0 1 2 3 4

Y a
xis

4
3

2
1
0

1
2

3
4

Z 
ax

is

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

X axis

1.000.750.500.250.000.250.500.751.00

Y a
xis

1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

Z 
ax

is

0.0
0.2
0.4

0.6

0.8

1.0

(a) Origins (b) Directions

Figure 8: Visualization of the origins and directions in 3D space of the pseudo samples (200 data
points) generated in our method (Row 1: real-world scene Fern, Row 2: synthetic scene Lego). The
origins and directions of the training data (around 20 data points for Row 1, around 100 for Row 2)
are colored in blue; pseudo data origins and directions in orange. The red diamond marks the origin
(0, 0, 0) in the 3D coordinate system

17



6.5 More Visual Results

(1) Visual comparison on NeRF real-world dataset. In Fig. 9, we present the visual comparison
on the NeRF real-world dataset (Real Forward-Facing). As seen, our methods (Ours-1 and Ours-2)
achieve comparable quality to NeRF (despite having only 1

26 FLOPs).

One may have noted that Ours-2 achieves significantly better quality than Ours-1 and NeRF on the
synthetic dataset (see Tab. 2 and Fig. 4 in the main paper), while on the real-world dataset, Ours-2
is not obviously better than Ours-1 and NeRF, either quantitatively (see Tab. 2 in the main paper) or
qualitatively (see Fig. 9 here).

This is mainly because on the real-world dataset, the original real training set has only dozens of
images – For the synthetic dataset, each scene has 100 training images; in comparison, for the real-
world dataset, each scene has merely 17 ∼ 54 images. We observe an apparent positive correlation
between data size and performance boost: more real data, more performance boost. E.g., on the
real-world dataset, scene Fern has the fewest training samples (17 images) and scene Horn has the
most (54 images). Note in Tab. 2, the test PSNR boost of Ours-2 over Ours-1 is also the smallest for
scene Fern and the greatest for Horn. Conceivably, with more real data collected, Ours-2 will pose
an even more pronounced advantage over Ours-1 and NeRF.

Fern (a) GT (b) NeRF [32] (c) Ours-1 (d) Ours-2

Room (a) GT (b) NeRF [32] (c) Ours-1 (d) Ours-2

Figure 9: Visual comparison between our R2L network (W256D88) and NeRF on the real-world
scene Fern (Row 1) and Room (Row 2). Ours-1 is trained sorely on pseudo data and Ours-2 is
trained on pseudo + real data

(2) Rendered videos of our method. Finally, we provide the rendered videos by our R2L method
along with those by NeRF for reference. Please see “rendered videos” on our project webpage.

18


