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NeRF-Art : Text-Driven Neural Radiance Fields
Stylization

Can Wang, Ruixiang Jiang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao∗

Abstract—As a powerful representation of 3D scenes, the neural radiance field (NeRF ) enables high-quality novel view synthesis from
multi-view images. Stylizing NeRF, however, remains challenging, especially in simulating a text-guided style with both the appearance
and the geometry altered simultaneously. In this paper, we present NeRF-Art, a text-guided NeRF stylization approach that
manipulates the style of a pre-trained NeRF model with a simple text prompt. Unlike previous approaches that either lack sufficient
geometry deformations and texture details or require meshes to guide the stylization, our method can shift a 3D scene to the target
style characterized by desired geometry and appearance variations without any mesh guidance. This is achieved by introducing a
novel global-local contrastive learning strategy, combined with the directional constraint to simultaneously control both the trajectory
and the strength of the target style. Moreover, we adopt a weight regularization method to effectively suppress cloudy artifacts and
geometry noises which arise easily when the density field is transformed during geometry stylization. Through extensive experiments
on various styles, we demonstrate that our method is effective and robust regarding both single-view stylization quality and cross-view
consistency. The code and more results can be found on our project page: https://cassiepython.github.io/nerfart/.

Index Terms—Stylization, Neural Radiance Fields, CLIP
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1 INTRODUCTION

Artistic works depict the world in various creative and
imaginative styles, evolving along with human progress.
While primarily driven by professionals, the generation of
artistic content is now more accessible to average users than
ever before, empowered by the recent research on visual
artistic stylization. In the era of deep learning, technical
advances are gradually reshaping how people create, con-
sume, and share art, from real-time entertainment to concept
design. Ever since neural style transfer [1], [2], [3], [4], [5]
shows the potential of encoding and changing visual styles
with deep neural networks, a significant amount of effort
has been devoted to effectively and efficiently migrating
the style of an arbitrary image [1], [6], [7], [8] or a specific
domain [9], [10] to the content image. Despite the impressive
results, these methods are limited to stylizing a single view
input captured by the content image.

Motivated by the increasing demand for 3D asset cre-
ation, our goal is to stylize 3D content from multi-view input,
in contrast to single-image stylization. In the domain of
3D representation, previous methods typically take explicit
models (e.g., meshes [11], [12], [13], [14], [15], voxels [16],
[17], and point clouds [18], [19]) followed by differentiable
rendering for multi-view stylization. These methods en-
able intuitive control over the geometry but suffer from
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the limited capacity for modeling and rendering complex
scenes. Recently, the implicit representation of neural ra-
diance field (NeRF) [20], [21], [22], [23], [24] significantly
improves the quality of novel view synthesis and thus
satisfies our needs for a general representation of various
scenes and objects. However, while enjoying the superior
scene reconstruction quality of NeRF, the curse of its highly
implicit volumetric representation of appearance and geom-
etry, parameterized and entangled by dense MLP networks,
makes NeRF more challenging to stylize through jointly
transforming the encoded color and shape.

Very recently, pioneering NeRF stylization works [25],
[26] have made exhilarating progress on appearance style
transfer of 3D scenes. However, their style guidance is
limited to image reference, which, although being adopted
as one common way to specify the target style, is not always
a perfect solution for every scenario—obtaining appropriate
style images that both reflect the target style and match
the source content might not be easy or even possible in
many cases. Therefore, finding another simple, natural, and
expressive form of guidance becomes an attractive idea.
Thanks to the parallel advances in language-vision models,
stylization with natural language is no longer a fantasy. As
demonstrated by recent text-guided stylization works [27],
[28], [29], [30], compared to image-guided approaches, short
text prompts provide 1) an extremely intuitive and user-
friendly way to specify styles, 2) a flexible control over var-
ious styles from abstract ones like a certain concept to very
concrete ones like a famous painting or character, and 3) a
view-independent representation that is free from content
alignment and naturally benefits cross-view consistency.

Yet, with the existing approaches, it is still challenging
to stylize the implicit representation of NeRF via a simple
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Source “Vincent van Gogh” “Tolkien Elf” “Fauvism” “Lord Voldemort” “Edvard Munch”

Source “Cubism Painting” “Pixar 3D Style” “Colorful Galaxy”

Fig. 1: NeRF-Art Results. Our NeRF-Art stylizes a pre-trained NeRF to match the desired style described by a text prompt.
It modulates not only the appearance but also the geometry of NeRF.

text prompt. Learning a latent space helps constrain the
geometry and texture modulations [31], but it is often data-
dependent and laborious. Some efforts directly enforce style
directions (Fig. 3) between the rendered views of NeRF and
the text in the CLIP [32] embedding space. In addition,
background augmentation [33] and mesh guidance [30]
have been proposed to improve the geometry and texture
modulations. However, they still suffer from insufficient
geometry deformations and texture details.

In this work, we propose NeRF-Art, a new text-driven
NeRF stylization method. Given a pre-trained NeRF model
and a single text prompt, our method enables consistent
novel view synthesis with both appearance and geome-
try transformed, adhering to the specified style. This is
achieved by combining the recent large-scale Language-
Vision model (i.e., CLIP) with NeRF, which is non-trivial
due to several challenges. Directly applying the supervision
from CLIP to NeRF by constraining the similarity between
the rendered views and the text in the embedding space
as [27] is insufficient to ensure the desired style strength.
To tackle this problem, we design a CLIP-based contrastive
loss to properly strengthen the stylization, by bringing the
results closer to the target style and farther away from other
styles pre-defined as negative samples. To further ensure the
uniformity of the style over the whole scene, we extend our
contrastive constraint to a hybrid global-local framework to
cover both global structures and local details. In addition,
to support geometry stylization jointly with appearance, we
relax the constraints on the density of the pre-trained NeRF
and adopt a weight regularization to effectively reduce
cloudy artifacts and geometry noises when altering the den-
sity field. In experiments, we first evaluate text description
selection for stylization and then test our method on various

styles and demonstrate text guidance’s effectiveness and
flexibility for NeRF stylization. Furthermore, we conduct
a user study to show that our method achieves the best
visual-pleasing results compared to related methods. We
also extract the mesh from the stylized NeRF to show the
geometry modulation ability of our method and integrate
it with different baselines to demonstrate the generalization
ability of our method to various NeRF-like models.

2 RELATED WORK

Neural Style Transfer on Images and Videos. Artistic im-
age stylization is a long-standing research area. Traditional
methods use handcrafted features to simulate styles [34],
[35]. With the fast development of deep learning, neural
networks have been applied to style transfer from either
an arbitrary image [1], [6], [7], [8], [36], [37] or a specific
domain [9], [10], [38], [39], and achieved impressive results.
By enforcing temporal smoothness constraints defined on
optical flows, neural style transfer has been successfully
extended to videos [40], [41], [42]. However, both image and
video stylization methods are restricted to the given views.
Simply combining the neural style transfer and novel view
synthesis methods without considering 3D geometry will
lead to blurriness or view inconsistencies.

Neural Stylization on Explicit 3D Representations. With
the increasing demand for 3D content, neural style transfer
has been extended to explicit 3D representations. The work
[43] first considers the cross-view disparity consistency and
applies style transfer on stereoscopic images or videos.
Later, considering the voxel is the most compatible represen-
tation for CNNs, SKPN [16] encodes volume using convolu-
tional blocks and stylizes it by deep features extracted from
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Reconstruc�on

Styliza�on

“Joker”

“Human”

“Soft Makeup Look”,
“Monkey D. Luffy”,
“Pencil Drawing”, ...

Fig. 2: NeRF-Art Pipeline. In the reconstruction stage, our method first pre-trains the NeRF model Frec of the target scene
from multi-view input with reconstruction loss Lrec. In the stylization stage, our method stylized NeRF model Frec to Fsty ,
guided by a text prompt ttgt, using a combination of relative directional loss Lrdir and global-local contrastive loss Lg+lcon in
the CLIP embedding space, plus weight regularization loss Lreg and perceptual loss Lper .

a reference image. As for mesh stylization, differential ren-
dering allows for backpropagating style transfer objectives
from rendered images to 3D meshes. According to whether
the geometry or texture is allowed to be optimized, existing
mesh style transfer methods achieve three different effects:
texture stylization [12], [44], geometric stylization [45], and
joint stylization [11], [46], [47]. Another line of work uses
point clouds as the 3D proxy to guarantee 3D consistency
in stylizing novel views from either a single image [48]
or multiple frames [49]. In these works, point-wise fea-
tures extracted from pre-trained PointNet [50] or GCN [51]
are stylized by feature transform algorithms, e.g., adaptive
normalization, and then rendered to novel views. Despite
the successes, these 3D stylization methods are difficult to
generalize to complicated objects or scenes with dedicated
structures, limited by the expressiveness of explicit 3D rep-
resentations.

Neural Stylization on NeRF. To address the inherent lim-
itations of explicit representations, implicit methods have
recently received much attention. NeRF is a seminal one
that is able to represent complex scenes by parameterizing
the implicit function as MLP networks. A large number of
follow-up works are presented to improve its efficiency [52],
[53], [54], [55], [56], [57], quality [58], [59], [60], [61], control-
lablity [31], [62], [63], [64], and generalization [65], [66], [67],
[68], [69], [70], [71], [72], [73], [74], [75], [76]. Inspired by the
power of NeRF, three very recent works [25], [77], [78] adopt
it for 3D stylization. They design the stylization network to
predict color-related parameters in the NeRF model based
on a reference style. And the stylization network is trained

either by imposing the image style transfer losses [1], [78]
on rendered views [25] or being supervised by a mutually
learned image stylization network [77]. These works have
achieved consistent results in novel-view stylization. How-
ever, their stylization is still restricted to appearance only
because they do not adjust density parameters in the NeRF
model. In contrast, our method supports both appearance
and geometric stylization to better mimic the reference style.
Moreover, they rely on reference images for stylization,
while we seek to stylize the scenes via simple text prompts.

Text-Driven Stylization. Compared to image references,
a natural language prompt is a more intuitive and user-
friendly way to specify the style. Therefore, a current line
of works shifted away from image reference towards text
guidance, with the help of the pre-trained CLIP [32], which
bridges texts and images by jointly learning a shared latent
space. The pioneering work StyleGAN-NADA [27] proposes
a directional CLIP loss for transferring the pre-trained Style-
GAN2 model [79] to the target domain with the desired style
described by a textual prompt. Hila et al. [80] proposed a
method for high-level feature transfer using a blending op-
erator that combines StyleGAN generator and CLIP semantic
encoder. However, these image-based methods may lead to
inconsistencies when applied to stylizing multiple views.
In the 3D world, Text2Mesh [29] uses CLIP to guide the
stylization of a given 3D mesh by learning a displacement
map for geometry deformation and vertex colors for texture
stylization. The contemporary work AvatarCLIP [30] further
supports driving a stylized human mesh using natural
languages. Despite their success, these methods are limited
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to mesh input. In contrast, our method is able to stylize
3D scenes with better visual quality and view consistency
without any mesh input.

3 OVERVIEW

As illustrated in Fig. 2, our approach is simply decomposed
into reconstruction and stylization stages. In what follows,
after briefly reviewing our 3D photography representation
with NeRF (§ 3.1), we put the focus on introducing our text-
guided stylization method. Specifically, we first formulate
the directional CLIP loss for stylization, which leverages the
power of the pre-trained Language-Vision model (§ 4.1).
Then, we introduce our global-local contrastive learning
framework to cope with the stylization strength issue of the
directional CLIP loss (§ 4.2). Next, we introduce a weight
regularization term to alleviate the cloudy artifacts caused
and geometry noises by the stylization process (§ 4.3).
Finally, we conclude this section with the overall training
strategy of the entire pipeline (§ 4.4).

3.1 Preliminary on NeRF Scene Representation
We take NeRF as our 3D scene representation, which defines
a continuous volumetric field as implicit functions, param-
eterized by MLP networks F . Given a single spatial coor-
dinate x = (x, y, z) and its corresponding view direction
d = (ϕ, θ), the network predicts the density σ and view-
dependent radiance c = (r, g, b), leading to the final color
C(r) of the camera ray r(t) = o + td by accumulating K
sample points along it, given the target view:

C(r) =
∑K

k=1
Tk(1− ωk)ck, (1)

where ωk = exp(−σk(dk+1 − dk)) represents the transmit-
tance of the ray segment (k, k + 1) and Tk =

∏k−1
i ωi is the

accumulated transmittance from the origin to the sample k.
To train NeRF from a set of multi-view photos, a sim-

ple supervised reconstruction loss is adopted between the
ground-truth pixel colors Ĉ(r) from the training view and
the NeRF prediction C(r):

Lrec =
∑

r

∥∥C(r)− Ĉ(r)
∥∥2
2
. (2)

4 TEXT-GUIDED NeRF STYLIZATION

After optimizing the reconstructed NeRF model Frec from
the multi-view input (§ 3.1), our goal is to train a stylized
NeRF model Fsty , which satisfies the style control of the
target text prompt ttgt while preserving the content from
Frec (Fig. 2).

The CLIP model aligns the semantics of image and text
in a joint embedding space, by utilizing the image encoder
Êi(·) and the text encoder Êt(·). The semantic power of
CLIP bridges the gap between natural language prompts
and synthesized image pixels, making it possible to stylize
NeRF scenes with text controls.

However, even with the powerful embedding space of
CLIP, it remains challenging to achieve text-guided NeRF
stylization that 1) preserves the original content from being
washed away by the new style, 2) reaches the target style
with proper strength that satisfies the semantics of the input
text prompt, and 3) maintains cross-view consistency and
avoids artifacts in the final NeRF model.

4.1 Trajectory Control w/ Directional CLIP Loss
An intuitive strategy for text-guided NeRF stylization would
be to enforce the trajectory of the stylization in the CLIP
space with an absolute directional CLIP loss that measures
the cosine similarity (⟨·, ·⟩) between the stylized NeRF ren-
dering Itgt and the target text prompt ttgt (Fig. 3(a)):

Ladir =
∑

Itgt

[
1−

〈
Êi(Itgt), Êt(ttgt)

〉]
, (3)

which guides NeRF rendering with a global direction of
the target text, not depending on any reference starting
point. This loss is first designed in StyleCLIP [81] to guide
face image editing and further extended to generative NeRF
editing in CLIP-NeRF [31].

However, as observed in StyleGAN-NADA [27], this
global loss could easily mode-collapse the generator and
hurt the generation diversity of stylization. Therefore, a rel-
ative directional loss is proposed, which transfers the source
image Isrc to the target domain guided by the CLIP-space
trajectory embedded by a pair of text prompts (tsrc, ttgt)
instead of a single one (Fig. 3(b)). Here tsrc indicates the
text prompt selected from a pre-defined source text database
that refers to natural face portraits (more details in § 5.1).
This relative directional CLIP loss for our NeRF stylization
is defined as:

Lrdir =
∑

Itgt

[
1−

〈
Êi(Itgt)−Êi(Isrc), Êt(ttgt)−Êt(tsrc)

〉]
.

(4)
Different from the single-image setting of StyleGAN-NADA,
here, the training target Itgt stands for an arbitrarily sam-
pled view rendered by the stylized NeRF of the same scene,
and the source image Isrc is produced by the pre-trained
NeRF model and shares the identical view as Itgt. We will
follow this convention hereinafter.

4.2 Strength Control w/ Glocal Contrastive Learning
As the directional CLIP loss (Equation (4)) works by measur-
ing the similarity between the normalized unit directions of
the embedded vectors, it can enforce the relative stylization
trajectory. However, it struggles with preserving enough
stylization strength in altering the pre-trained NeRF model.

To address this issue, we propose a contrastive learn-
ing strategy to control the stylization strength (Fig. 3(c)).
Specifically, in the framework of contrastive learning, with
the rendered view Itgt as the query target, we set positive
samples to the target text prompt ttgt with the desired style
and construct negative samples tneg ∈ Tneg by sampling a
set of text prompts semantically irrelevant to Itgt. In general,
our contrastive loss in the CLIP space is defined as:

Lcon = −
∑

Itgt
log

[
exp(v · v+/τ)

exp(v · v+/τ) +
∑

v− exp(v · v−/τ)

]
,

(5)
where {v,v+,v−} are query, positive sample, and negative
sample, respectively, and temperature τ is set to 0.07 in
all our experiments. When defining the loss globally by
treating the entire view Itgt as the query anchor, we have
the global contrastive loss Lgcon with {v = Êi(Itgt), v+ =
Êt(ttgt), v− = Êt(tneg)}.

Ideally, this global contrastive loss cooperates with the
directional CLIP loss, where the former defines the style
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(a) Ladir (b) Lrdir (c) Llcon & Lgcon

Fig. 3: CLIP-Guided Stylization Losses. (a) The absolute directional loss; (b) The relative directional loss; (c) The global
and local contrastive loss.

trajectory that aligns with the target text, and the latter,
at the same time, ensures the proper stylization magni-
tude by pushing along the style trajectory. However, the
global contrastive loss still has trouble achieving sufficient
and uniform stylization on the entire NeRF scene, leading
to excessive stylization on certain parts and insufficient
stylization in other regions. This may be attributed to the
fact that CLIP focuses more attention on local regions with
distinguishable features than the entire scene. Thus, this
global contrastive loss can deliver a small value even when
the overall stylization is insufficient or non-uniform. To
achieve a more sufficient and balanced stylization, enforced
by a more locally-attended contrastive learning approach,
inspired by PatchNCE loss [82], we propose a complemen-
tary local contrastive loss Llcon which sets queries to random
local patches Ptgt cropped from Itgt: {v = Êi(Ptgt), v+ =
Êt(ttgt), v− = Êt(tneg)}.

Overall, we combine the global and local terms as our
final global-local contrastive loss:

Lg+lcon = λgLgcon + λlLlcon. (6)

4.3 Artifact Suppression w/ Weight Regularization

Our pipeline aims to change not only the color but also the
density of the pre-trained NeRF to achieve a joint stylization
of appearance and geometry. However, allowing the train-
ing process to alter the density may lead to cloud-like semi-
transparent artifacts near the camera and geometry noises,
even if the pre-trained NeRF is perfectly clean. To alleviate
that, we adopt a weight regularization loss to suppress ge-
ometric noises and encourage a more concentrated density
distribution that better resembles real-world scenes.

Based on our NeRF notations (Equation (1)), the weight
of each ray sample is defined as the contribution to the final
ray color: wk = Tk(1 − ωk), where

∑
k wk ≤ 1. Similar

to the distortion loss in mip-NeRF 360 [83], the weight
regularization loss is defined as:

Lreg =
∑

Itgt

∑
r

∑
(i,j)∈K

wiwj ∥di − dj∥ , (7)

where for each ray r of a randomly sampled view Itgt, pairs
of samples (i, j) with distances ∥di − dj∥ are sampled. But

different from mip-NeRF 360 that optimizes the distances,
we penalize those pairs with scattered large weights to
suppress noise peeks and aggregate weights to the correct
object surface.

4.4 Training Strategy
During training, we finetune the pre-trained NeRF model for
stylization. The overall objective consists of three parts: text-
guided stylization losses (including directional CLIP loss
and global-local contrastive loss to control style trajectory
and strength, respectively), content-preservation loss (we
adopt VGG-based perceptual loss), and artifact suppression
regularization loss:

L = (Lrdir + Lg+lcon) + λpLper + λrLreg. (8)

Here we define the perceptual loss Lper between the original
and stylized NeRF renderings on certain pre-defined VGG
layers ψ ∈ Ψ:

Lper =
∑

Itgt

∑
ψ∈Ψ

∥ψ(Itgt)− ψ(Isrc)∥22. (9)

It’s practically infeasible to train stylization on all rays
due to backward gradient propagation’s prohibitively huge
memory consumption. To address this issue, previous works
either sample sparse rays to obtain coarse images or
patches [25], [30], [65], [84] or render all rays to low resolu-
tion and then upsample with CNN networks [85]. However,
coarse renderings or patches lose style details and semantic
structures, while upsampling harms the cross-view consis-
tency. Instead, we adopt a much easier solution, which first
renders all rays to obtain the whole image of an arbitrary
view, calculates the stylization loss gradients in the forward
process, and then back-propagates the gradients through
NeRF at the patch level. This significantly reduces memory
consumption and allows for high-resolution rendering for
better stylization training. Similar techniques are also used
in some related works, such as ARF [78].

5 EXPERIMENTS

5.1 Implementation Details
We implement our framework using PyTorch with Adam op-
timizer. In the reconstruction training stage, we sample 192
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“Fauvism” “Fauvism
painting”

“painting,
Fauvism style”

“painting, oil on
canvas, Fauvism

style”

“Lord Voldemort” “Head of Lord
Voldemort”

“Head of Lord
Voldemort in
fantasy style”

“Head of Lord
Voldemort in
fantasy style,

Harry Potter Film”

“Chinese Painting” “Chinese Ink Painting”

“Pixar Style” “3D Render in the Style of Pixar”

Fig. 4: Text Evaluation. We present descriptions at different
detail levels for a specific style.

points for each ray and train our model for 6 epochs with
the learning rate of 0.0005. While in the stylization training
stage, we train our model for 4 epochs with the learning
rate of 0.001. We set hyper-parameters λg , λl, λp, and λr as
0.2, 0.1, 2.0, and 0.1, respectively. To construct the negative
samples, we manually collect around 200 text descriptions
from Pinterest website, describing various styles, like “Zom-
bie”, “Tolkien elf”, and “Self-Portrait by Van Gogh”. We set
the patch size as the 1/10 of the original input in the local
contrastive loss. In our relative directional loss (Equation 4),
tsrc is automatically selected using a source text database
containing various types of texts, such as “human”, “human
face”, and “portrait”, and so on. To choose the appropriate
source text, we use the CLIP similarity metric to compare
the similarity between the source renderings and each text
in the database. The text with the highest similarity score
is then chosen as tsrc. Without loss of generality, we adopt
VolSDF [86] as the basic NeRF model for stylization.

5.2 Data Collection
Three self-portrait datasets are gathered under an in-the-
wild condition by asking three users to capture selfies

Source “Joker” “Fernando Botero”

Source “Bear” “Vincent van Gogh”

StyleGAN-
NADA Ours StyleGAN-

NADA Ours

Fig. 5: Comparisons. Comparisons with the text-guided
image stylization method StyleGAN-NADA [27].

video for around 10 seconds with the front-facing camera.
We finally received six video clips in around 10 seconds.
After collecting these video clips under different views and
expressions, we extract 100 frames for each video clip using
FFmpeg with 15 fps. Then these frames are resized to 270×
480. Then we estimate camera poses for these frames using
COLMAP [87] with rigid relative camera pose constraints.
We suppose frames in a video share the same intrinsics.
We also reconstruct a lady from the H3DS dataset [88]. We
remove noise frames and obtain 31 sparse views. Moreover,
we use the image size with 256×256 for stylization. We
also adopt the Local Light Field Fusion (LLFF) dataset [89]
to stylize non-face scenes. LLFF dataset is composed of
forward-facing scenes, with around 20 to 60 images.

5.3 Text Evaluation
As CLIP [82] is sensitive to text prompts, we conduct a text
description evaluation in Fig. 4. When a text description
refers to a style in general, not anyone in particular, the
stylization can be insufficient. For example, “Fauvism” only
induces stylization around the mouth as it describes the
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“Vincent van Gogh” “Fauvism” “Vincent van Gogh” “Fauvism”

Source CLIP-NeRF Ours CLIP-NeRF Ours Source CLIP-NeRF Ours CLIP-NeRF Ours

“Checkerboard” “Mosaic Design”

Source CLIP-NeRF Ours Source CLIP-NeRF Ours

“Tolkien Elf” “Fauvism” “Bat Man” “Hulk”

Source DreamField Ours DreamField Ours Source Dream-
Field Ours DreamField Ours

Fig. 6: Comparisons. Comparisons to text-guided NeRF stylization method CLIP-NeRF [31] and DreamField [33].

general meaning, like artists “Henri Matisse” and “Kees van
Dongen” or “Brutalist painting”. And the same observations
when comparing “Chinese Painting” and “Chinese Ink Paint-
ing”. In contrast, when a text refers to a specific object or
style, the language ambiguity will disappear. For example,
“Lord Voldemort”, “Head of Lord Voldemort”, and “Head of Lord
Voldemort in fantasy style” reveal similar stylization results.
We also see similar results concerning the Pixar style. In the
interests of brevity, we use “Fauvism” to represent “painting,
oil on canvas, Fauvism style” and “Vincent van Gogh” to rep-
resent “painting, oil on canvas, Vincent van Gogh self-portrait
style” in other experiments. We also use the same prompt
augmentation strategy for other painting styles, including

“Edvard Munch” and “Fernando Botero”.

5.4 Comparisons

We compare with most related works following three
categories: 1) Text-driven image stylization: StyleGAN-
NADA [27]; 2) Text-driven mesh-based stylization:
Text2Mesh [29] and AvatarCLIP [30]; and 3) Text-driven NeRF
stylization: CLIP-NeRF [31] and DreamField [33]. To make
fair comparisons with these methods, we adopt author-
released codes and accommodate the input to each method
as required. For StyleGAN-NADA, we follow its steps to first
conduct a face alignment under the setting of FFHQ [90] and
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“Vincent van Gogh” “Edvard Munch” “Tolkien Elf” “Joker”

Source AvatarCLIP Ours AvatarCLIP Ours Source AvatarCLIP Ours AvatarCLIP Ours

“Pixar” “Lord Voldemort” “Iron Man” “Superman”

Source Text2Mesh Ours Text2Mesh Ours Source Text2Mesh Ours Text2Mesh Ours

Fig. 7: Comparisons. Comparisons to text-guided mesh-based stylization method Text2Mesh [29] and AvatarCLIP [30].
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Source “Vincent van
Gogh” “Tolkien elf” “Fauvism” “Fernando

Botero” Source “Edvard
munch” “Joker” “Fauvism” “Fernando

Botero”

Fig. 8: Generalization Evaluation. Generalization evaluation on VolSDF and NeuS.

then invert these faces using e4e [91] into latent codes, before
inputting them to StyleGAN-NADA. We have also tried
pSp [92] to invert latent codes but finally adopt e4e to obtain
better stylization results. Per the authors’ advice, we train
600 iterations and sample faces presenting visual-pleasing
stylized results. We place the final stylized faces back on
the input images by inversing the face alignment process.
As for Text2Mesh, the input mesh of one example (‘Lady’)

is provided by the H3DS [88], while the input mesh of
another example (‘Human’) is fetched from AvatarCLIP. Both
meshes are normalized into -1 to 1, before inputting them to
Text2Mesh. We follow the training setting of Text2Mesh in
stylizing the person object to stylize ‘Lady’ and ‘Human’. We
compare to DreamField and AvatarCLIP following the shape
sculpting and texture generation process of AvatarCLIP.
Similar to AvatarCLIP, we also adopt prompt augmenta-
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Source w/o Lg+l
con w/o Ll

con w/o Lg
con Full

Fig. 9: Ablations on CLIP-Guided Losses. Without our
global-local contrastive losses, the results suffer from insuf-
ficient or non-uniform stylization. The target prompts are
“White Walker” and “Tolkien Elf” respectively.

tions when stylizing the ‘Human’. For example, we use text
prompts including “Tolkien Elf”, “the back of Tolkien Elf”, and
“the face of Tolkien Elf” for the detailed refinement.

The visual comparisons are demonstrated in Fig. 5,
Fig. 6, and Fig. 7. For video results, please see the supple-
mentary material.
Comparisons to text-driven image stylization. Compared
to StyleGAN-NADA, our method can better ensure the de-
sired style strength in all examples by introducing global-
local contrastive learning. StyleGAN-NADA achieves visual-
pleasing results on sampled faces but reflects a degrada-
tion for in-the-wild faces partly due to the latent code
inversion. Moreover, as a 3D stylization method, ours can
preserve view consistencies in the stylized results. In con-
trast, StyleGAN-NADA stylizes each view independently,
thus introducing inconsistent shapes or textures to different
views. This may lead to flickering artifacts when applied
to video applications. Moreover, StyleGAN-NADA is less
friendly to real faces as the input image has to be inverted
back to the StyleGAN latent space before stylization, which
will inevitably lead to some detail loss and identity change.
Unlike it, NeRF-Art is not constrained by any latent space of
pre-trained networks and does not need the inversion step.
Comparisons to text-driven NeRF stylization. Compared
with CLIP-NeRF, our advantages are two-fold. First, CLIP-
NeRF stylizes NeRF using the absolute directional loss,
which does not put enough stylizations. Moreover, it suffers
from uneven stylizations. For example, we only see enough
stylizations on the nose and hair for style “Fauvism”, but
the man’s cheek has not been fully stylized. In contrast,
we design a global-local contrastive learning strategy to
ensure the desired style strength. Second, as no weight
regularization is used in CLIP-NeRF, its results may ap-
pear as severe geometry noises. In contrast, our weight
regularization suppresses geometric noises by encouraging
a more concentrated density distribution. DreamField also
adopts the absolute directional loss to stylize NeRF, which

cannot guarantee sufficient and uniform stylization. Dream-
Field adopts a random background augmentation to CLIP’s
attention on the foreground, which requires view-consistent
masks, while ours does not. Moreover, our method consis-
tently outperforms DreamField in detailed cloth wrinkles,
facial attributes, and fine-grained geometry deformations,
like muscle shapes and antennas. In summary, our NeRF-
Art outperforms these methods by proposing a contrastive
learning technique to achieve sufficient and uniform styl-
ization and designing a weight regularization to remove
cloudy artifacts and geometry noises.
Comparisons to text-driven mesh-based stylization.
Text2Mesh also supports geometry deformation and texture
stylization of a 3D model like ours. However, it assumes
there exists a synergy between the input 3D geometry and
the target prompt and is more likely to fail when stylizing
a 3D mesh towards a less related prompt, such as “Pixar”
for the ‘Lady’)’s model in Fig. 7. With carefully-designed
loss constraints, ours is more robust to different prompts,
either related to the 3D scenes or not. Moreover, limited by
the expressivity of the mesh representation, Text2Mesh fails
most runs and presents unstable stylization results, resulting
in irregular deformations and indentations on the edge or
surface. Authors of AvatarCLIP also report similar results
when comparing to Text2Mesh. Similar to DreamField, Avatar-
CLIP adopts a random background augmentation to lead
CLIP to focus on the foreground and prevent floating ar-
tifact generations. Nevertheless, this process requires view-
consistent masks while ours does not. Moreover, AvatarCLIP
adds an additional color network to constrain the general
shape of the avatar as well as introducing random shading
and lighting augmentations on the textured renderings to
strengthen the stylization. Even with these augmentations,
AvatarCLIP still fails to produce satisfying texture and geom-
etry details. In contrast, ours reveals a fine-grained beard,
detailed wrinkles of garments, and clearer face attributes.
Noteworthy, our NeRF-Art supports stylizing in-the-wild
faces, while AvatarCLIP requires a 3D mesh as input to
conduct these augmentations. Finally, AvatarCLIP can still
generate random bumps in the background and make the
extracted surface noisy. This is because AvatarCLIP sampled
sparse rays (112 × 112) to construct coarse renderings for
CLIP constraints, due to the out-of-memory problem. We
found worse results with more noise when reducing sam-
pled ray numbers. In contrast, our method supports training
stylization on all rays by imposing a memory-saving tech-
nique. In conclusion, NeRF-Art achieves better stylization
using the proposed contrastive learning strategies without
any mesh guidance.

5.5 User Study

To evaluate stylization quality from human perception, we
conducted a user study. For each compared category, we
used two subjects. For each subject, we selected 5 prompts
from our text descriptions dataset and finally obtained
10 test cases for each category and 50 in total. For ev-
ery test case, we showed one sample of input frames,
the textual prompt, and the results of different methods
in two views and random order. The participants were
given unlimited time to select the best stylization results
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Fig. 10: Geometry Evaluation. Our method modulates the geometry and color simultaneously of a pre-trained NeRF to
match the desired style described by a text prompt.

“Disney 2D Superman”

“Groot, Guardians of the Galaxy”

w/o Lreg w/ Lreg

Fig. 11: Ablations on Weight Regularization. Cloudy ar-
tifacts near the corner or geometric noises are observed
without the weight regularization loss.

by jointly considering three aspects: preservation of the
content, faithfulness to the style, and view consistency. We
finally collected 23 questionnaires completed by 10 male
and 13 female participants. Statistics of the user study
are shown in Fig. 12. Our method outperforms StyleGAN-
NADA, CLIP-NeRF, Text2Mesh, DreamField, and AvatarCLIP
by achieving much higher user preference rates. We conduct
further repeated-measures analyses of variance (ANOVAs)
on the results of the user study, and we find that our method
consistently demonstrates significant superiority over all
competitors (p < 0.005).

0 %

50 %

100 %

29.1

70.9

Ours StyleGAN-NADA

20.9

79.1

Text2Mesh Avg.

CLIP-NeRF DreamField AvatarCLIP

23.0

77.0

17.8

82.2

38.2

61.8

25.8

74.2

Fig. 12: User Study. Our method consistently outperforms
state-of-the-art text-guided stylization methods on user
preference rates (%).

5.6 Ablation Study

Why global-local contrastive learning? A straightforward
way to stylize NeRFs is to apply the directional CLIP loss
proposed by StyleGAN-NADA [27] to the rendered views.
Unfortunately, the directional CLIP loss can enforce the
right stylization trajectory but struggles to reach a sufficient
magnitude, as shown in the 2nd column of Fig. 9. This is
because the loss only measures the directional similarity
between the normalized embedded vectors but ignores their
actual distances. In contrast, our global contrastive loss
(3rd column of Fig. 9) can ensure the proper stylization
magnitude by pushing it as close as possible to the target.
However, the global contrastive loss still cannot guarantee
a sufficient and uniform stylization of the whole scene. The
stylization shows excess on certain parts and insufficiency
on others, e.g., insufficient stylized faces and excessively
stylized eyes in the “Tolkien Elf” example in the 3rd column
of Fig. 9. This may attribute to the fact that CLIP focuses
more attention on regions with distinguishable features than
on other regions. Our local contrastive loss helps achieve
more balanced stylized results by stylizing every local re-
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gion of the scene (4th column of Fig. 9). However, this local
contrastive loss without global information may produce
excessive facial attributes, e.g., generating more eyes in the
“White Walker” example and two left ears in the “Tolkien Elf”
example. This attributes to insufficient semantics involved
in a local patch. This problem can be avoided by adding the
global contrastive loss at the same time.

By combining both global and local contrastive loss
with the directional CLIP, our method successfully achieves
uniform stylization with both correct stylization direction
and sufficient magnitude (5th column of Fig. 9).
Why weight regularization? Altering the geometry of NeRF
may potentially cause cloudy artifacts. In Fig. 11, we demon-
strate that the weight regularization loss can suppress
cloudy artifacts and geometric noises by encouraging a
more concentrated density distribution for stylization.

5.7 Generalization Evaluation
We conduct a generalization evaluation on VolSDF and
NeuS in Fig. 8 to evaluate NeRF-Art’s ability in adapting to
different NeRF-like models. For NeuS, we adopt foreground
segmentation using RVM [93] for better reconstructions and
dilate the mask with two iterations of 3 × 3 kernel to
allow for certain geometric variations. In Fig. 8, our method
presents similar stylization results on VolSDF and NeuS,
which demonstrates that our NeRF-Art has the ability to
adapt to different NeRF-like models.

5.8 Geometry Evaluation
To evaluate whether the geometry will be correctly modu-
lated in the stylization process, we show the geometry eval-
uation results in Fig. 10. We extract meshes using Marching
Cubes [94] before and after the stylization for comparison
and report results on two widely-used NeRF-like models
VolSDF [86] and NeuS [95]. We clearly see geometry changes
by comparison with the source mesh. For example, “Lord
Voldemort” flattens the girl’s nose, “Tolkien Elf” sharpens the
girl’s ears, and “Pixar” rounds the jaw. Moreover, we find
the same observations on both VolSDF and NeuS. In sum-
mary, we conclude that our method can correctly modulate
the geometry of NeRF to match the desired style.

5.9 Quantitative Analysis

Source StyleGAN-NADA CLIP-NeRF DreamField Text2Mesh AvatarCLIP Ours
CLIP 0.3901 0.7061 0.6392 0.6523 0.6753 0.6982 0.7356

TABLE 1: Image Quality Evaluation. We compute the CLIP
similarity between the stylized views and the target data,
which shows that our method outperforms other methods.

Image quality evaluation. It is impractical to generate a
large number of stylized images that are sufficient to reliably
evaluate the FID scores of optimization-based methods, in-
cluding AvatarCLIP, Text2Mesh, and our method. Instead, we
utilize CLIP similarity as the evaluation metric to evaluate
the quality of the stylized images. Specifically, we collect
50 images from the Internet based on the description of
the target style and then calculate the CLIP similarity be-
tween the stylized renderings (30 views) and these collected

images. As the baseline, we also calculate the CLIP simi-
larity between the source renderings (30 views) and these
collected images. We experiment on five vastly-different
styles and report the average values in Table 1. Our method
significantly outperforms the compared methods, indicating
its potential to produce stylized renderings that are more
faithful to target styles.

Female Man Room Trex Flower Fern Human
Source 0.0130 0.0087 0.0056 0.0047 0.0023 0.0038 0.0010

CLIP-NeRF 0.0182 0.0228 0.0126 0.0093 0.0085 0.0124 0.0071
DreamFields 0.0161 0.0197 - - - - 0.0043
AvatarCLIP 0.0155 0.0178 - - - - 0.0022

Ours 0.0137 0.0092 0.0061 0.0054 0.0028 0.0042 0.0014

TABLE 2: View Consistency Evaluation. To assess the
consistency of views before and after stylization, we use
warped LPIPS and evaluate the results. We are unable to
provide values for DreamFields and AvatarCLIP on LLFF
scenes due to the fact that both methods are designed for
objects with masks. We observe that NeRF-Art exhibits the
least degradation in view consistency compared to other
methods.

View consistency evaluation. We evaluate the view consis-
tency using warped LPIPS. Specifically, we randomly render
a pair of source and target views Vi and Vt, with their re-
spective poses Pi and Pt. In addition, we calculate the depth
of the source view as di. Then, we warp the pose of the
source view Vi from Pi to Pt using the depth di, and obtain
the warped view Ṽt. Between M ·Vt and M · Ṽt, we calculate
their perceptual similarity in LPIPS, whereM is the warping
mask. We evaluate the view consistency of NeRF-Art against
previous methods and the original NeRF model on seven
cases, each using 30 pairs of views. As shown in Table 2, our
NeRF-Art achieves the least degradation in view consistency
compared to other methods.

6 CONCLUSION

In this paper, we present NeRF-Art, the text-guided NeRF
stylization approach based on CLIP. Unlike existing ap-
proaches that require mesh guidance in the stylization
process or trap in insufficient geometry deformations and
texture details in stylization, ours modulate its geometry
and appearance simultaneously to match the desired style
and show visual-pleasing results of geometry deformations
and texture details with only text guidance. To achieve
it, we introduce a carefully-designed combination of the
directional constraint to control the style trajectory and a
novel global-local contrastive loss to enforce the proper style
strength. Moreover, we propose a weight regularization
strategy to alleviate the cloudy artifacts and geometry noises
in deforming the geometry. Extensive experiments on real
faces and general scenes show that our method is effective
and robust in both stylization quality and view consistency.
Limitations. Despite the success in most cases, our method
still has some limitations. First, some text prompts are
linguistically ambiguous, like “Digital painting”, which de-
scribes a wide range of styles, including oil paintings, pencil
sketches, 3D rendering images, cartoon drawings, etc. This
ambiguity might confuse the CLIP and make the final result
unexpected, as shown in Fig. 13. Semantically meaningless
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Source “Digital
painting” Source “Mouth

Batman”

Fig. 13: Limitations. Linguistic ambiguity (left) or seman-
tically meaningless words (right) may lead to unexpected
results.

words cause another kind of unexpected result. For exam-
ple, if we combine the words “Mouth” and “Batman” as a
prompt, the result unexpectedly puts a bat shape on the
mouth, which may not be what the user desires. These
are interesting problems worth exploring in the future. An
additional limitation of our model is that it requires re-
optimization whenever the target text is modified, which is a
common shortcoming for optimization-based methods such
as AvatarCLIP and DreamField. We plan to investigate a fast
feedforward approach in our future research to address this
limitation.
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