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Abstract

Existing 3D-aware image synthesis approaches mainly
focus on generating a single canonical object and show
limited capacity in composing a complex scene containing
a variety of objects. This work presents DisCoScene: a 3D-
aware generative model for high-quality and controllable
scene synthesis. The key ingredient of our method is a
very abstract object-level representation (i.e., 3D bounding
boxes without semantic annotation) as the scene layout
prior, which is simple to obtain, general to describe various
scene contents, and yet informative to disentangle objects
and background. Moreover, it serves as an intuitive user
control for scene editing. Based on such a prior, the
proposed model spatially disentangles the whole scene into
object-centric generative radiance fields by learning on
only 2D images with the global-local discrimination. Our
model obtains the generation fidelity and editing flexibility
of individual objects while being able to efficiently compose
objects and the background into a complete scene. We
demonstrate state-of-the-art performance on many scene
datasets, including the challenging Waymo outdoor dataset.
Project page can be found here.

1. Introduction
3D-consistent image synthesis from single-view 2D data

has become a trendy topic in generative modeling. Recent
approaches like GRAF [40] and Pi-GAN [5] introduce
3D inductive bias by taking neural radiance fields [1,
28, 29, 36, 38] as the underlying representation, gaining
the capability of geometry modeling and explicit camera
control. Despite their success in synthesizing individual
objects (e.g., faces, cats, cars), they struggle on scene
images that contain multiple objects with non-trivial layouts
and complex backgrounds. The varying quantity and large
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diversity of objects, along with the intricate spatial arrange-
ment and mutual occlusions, bring enormous challenges,
which exceed the capacity of the object-level generative
models [4, 13, 15, 33, 45, 46, 60].

Recent efforts have been made towards 3D-aware scene
synthesis. Despite the encouraging progress, there are still
fundamental drawbacks. For example, Generative Scene
Networks (GSN) [8] achieve large-scale scene synthesis by
representing the scene as a grid of local radiance fields and
training on 2D observations from continuous camera paths.
However, object-level editing is not feasible due to spatial
entanglement and the lack of explicit object definition. On
the contrary, GIRAFFE [32] explicitly composites object-
centric radiance fields [16, 34, 56, 63] to support object-
level control. Yet, it works poorly on challenging datasets
containing multiple objects and complex backgrounds due
to the absence of proper spatial priors.

To achieve high-quality and controllable scene synthesis,
the scene representation stands out as one critical design
focus. A well-structured scene representation can scale
up the generation capability and tackle the aforementioned
challenges. Imagine, given an empty apartment and a
furniture catalog, what does it take for a person to arrange
the space? Would people prefer to walk around and throw
things here and there, or instead figure out an overall
layout and then attend to each location for the detailed
selection? Obviously, a layout describing the arrangement
of each furniture in the space substantially eases the scene
composition process [17, 26, 58]. From this vantage point,
here comes our primary motivation — an abstract object-
oriented scene representation, namely a layout prior, could
facilitate learning from challenging 2D data as a lightweight
supervision signal during training and allow user interaction
during inference. More specifically, to make such a prior
easy to obtain and generalizable across different scenes, we
define it as a set of object bounding boxes without semantic
annotation, which describes the spatial composition of ob-
jects in the scene and supports intuitive object-level editing.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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In this work, we present DisCoScene, a novel 3D-aware
generative model for complex scenes. Our method allows
for high-quality scene synthesis on challenging datasets
and flexible user control of both the camera and scene
objects. Driven by the aforementioned layout prior, our
model spatially disentangles the scene into compositable
radiance fields which are shared in the same object-centric
generative model. To make the best use of the prior as a
lightweight supervision during training, we propose global-
local discrimination which attends to both the whole scene
and individual objects to enforce spatial disentanglement
between objects and against the background. Once the
model is trained, users can generate and edit a scene by
explicitly controlling the camera and the layout of objects’
bounding boxes. In addition, we develop an efficient render-
ing pipeline tailored for the spatially-disentangled radiance
fields, which significantly accelerates object rendering and
scene composition for both training and inference stages.

Our method is evaluated on diverse datasets, including
both indoor and outdoor scenes. Qualitative and quanti-
tative results demonstrate that, compared to existing base-
lines, our method achieves state-of-the-art performance in
terms of both generation quality and editing capability.
Tab. 1 compares DisCoScene with relevant works. it is
worth noting that, to the best of our knowledge, DisCoScene
stands as the first method that achieves high-quality 3D-
aware generation on challenging datasets like WAYMO [48],
while enabling interactive object manipulation.

2. Related Work
3D-aware Image Synthesis. Generative Adversarial Net-
works (GANs) have achieved remarkable success in 2D im-
age synthesis [14, 22–25], and have recently been extended
to 3D-aware image generation. VON [68] and HoloGAN
[30] introduce voxel representations to the generator and
use neural rendering to project 3D voxels into 2D space.
Then, GRAF [40] and Pi-GAN [5] propose to use implicit
functions to learn NeRF from single-view image collec-
tions, resulting in better multi-view consistency compared
to voxel-based methods. GOF [59], ShadeGAN [35], and
GRAM [7] introduce occupancy field, albedo field and
radiance surface instead of radiance field to learn better
3D shapes. However, high-resolution image synthesis with
direct volumetric rendering is usually expensive. Many
works [4, 15, 32, 33, 45, 60, 62] resort to convolutional
upsamplers to improve the rendering resolution and qual-
ity with lower computation overhead. While some other
works [41,46] adopt patch-based sampling and sparse-voxel
to speed up training and inference. Note that most of
these methods are restricted to well-aligned objects and
fail on more complex, multi-object scene imagery. Our
work instead naturally handles multi-object scenes with
spatial disentangled object-level radiance fields, which can

Table 1. Comparison of DisCoScene and relevant works.
Multiple Objects: Ability to model multiple objects in a scene.
Radiance Field: If radiance fields are used to model scenes. Com-
plex Scene: Ability to handle complex datasets beyond diagnostic
scenes. Object Editing: If object-level editing is supported. No
Camera Sequence: Not requiring ground truth camera sequences.

Model Multiple Radiance Complex Object No Camera
Objects Field Scene Editing Sequence

GRAF [40] ✗ ✓ ✗ ✓ ✓
BlockGAN [30] ✓ ✗ ✗ ✓ ✓

GSN [8] ✓ ✓ ✓ ✗ ✗
GIRAFFE [32] ✓ ✓ ✗ ✓ ✓

DisCoScene ✓ ✓ ✓ ✓ ✓

be scaled to very challenging real-world scene datasets.
Scene Generation. Scene generation has been a long-
standing task. Early works like [52] attempt to model a
complex scene by trying to generate it. Recently, with the
successes in generative models, scene generation has been
advanced significantly. Among them, one popular line is
to resort to the setups of image-to-image translation from
given conditions, i.e., semantic masks [19,37,49,50,55,67],
object-attribute graph [2]. Although able to synthesize
photorealistic scene images, they struggle to manipulate the
objects in 3D space due to the lack of 3D understanding.
Some works [9, 53, 64, 65] reuse the knowledge from 2D
GAN models to achieve scene manipulation like the camera
pose. But they suffer from poor multi-view consistency
due to inadequate geometry modeling. Another active
line of work [9, 31, 32, 64] explores adding 3D inductive
biases to the scene representation. BlockGAN [31] and
GIRAFFE [32] introduce compositional voxels and radi-
ance fields to encode the object structures, but their object
control can only be performed at simple diagnostic scenes.
DepthGAN [44] introduces depth as a 3D prior but is hard to
achieve manipulation and multi-view consistency. GSN [8]
proposes to represent a scene with a grid of local radiance
fields. However, since this local radiance field does not
properly link to the object semantics, individual objects
cannot be manipulated with versatile user control. Our work
proposes to use an abstract layout prior to spatially disen-
tangle the whole scene into object-centric radiance fields,
which enables 3D-aware image synthesis on challenging
real-world imagery like WAYMO [48].

3. Method
The overall framework is illustrated in Fig. 1. We

employ layout as an explicit prior to disentangle objects in
our approach (Sec. 3.1). Based on the layout prior, we in-
troduce our spatially disentangled radiance fields (Sec. 3.2)
and an efficient rendering pipeline (Sec. 3.3) to achieve
controllable 3D-aware scene generation. We also describe
our global-local discrimination, which makes training on
challenging datasets possible (Sec. 3.4). Finally, we discuss
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Figure 1. The overall pipeline of DisCoScene. Conditioned by the layout prior, our spatial disentangle generative radiance fields generate
individual objects and the background. Our efficient neural rendering pipeline then composites the scene to a low-resolution feature map
with the volume renderer and upsamples to the final high-resolution image with the upsampler. During training, we propose global-local
discrimination which applies the scene discriminator to the entire image and the object discriminator to cropped object patches. During
inference, users can manipulate the layout to control the generation of a specific scene at the object level.

our model’s training and inference details on 2D image
collections (Sec. 3.5).

3.1. Abstract Layout Prior

There exist many representations of a scene, including
the popular choice of scene graph [6, 20, 34, 47], where
objects and their relations are denoted as nodes and edges.
Although graph can describe a scene in rich details, its
structure is hard to process and the annotation is laborious to
obtain in our case. Therefore, we opt to represent the scene
layout in a much-simplified manner – a set of bounding
boxes B = {Bi|i ∈ [1, N ]} without category annotation,
where N counts objects in the scene. Concretely, each
bounding box is defined with 9 parameters, including ro-
tation ai, translation ti, and scale si.

Bi = [ai, ti, si], (1)
ai = [ax, ay, az], ti = [tx, ty, tz], si = [sx, sy, sz], (2)

where ai comprises 3 Euler angles, which are easier to
convert into rotation matrix Ri. Using this notation, the
bounding box Bi can be transformed from a canonical
bounding box C, i.e., a unit cube at the coordinate origin:

Bi = bi(C) = Ri · diag(si) ·C+ ti, (3)

where bi stands for the transformation of Bi and diag(·)
yields a diagonal matrix with the elements of si. Our
abstract layout is more friendly to collect and easier to edit,
allowing for versatile interactive user control.

3.2. Spatially Disentangled Radiance Fields

Object Representation. Neural radiance field (NeRF) [29]
F(x,v) → (c, σ) regresses color c ∈ R3 and volume den-
sity σ ∈ R from coordinate x ∈ R3 and viewing direction
v ∈ S2, parameterized with multi-layer perceptron (MLP)

networks. Recent attempts propose to condition NeRF with
a latent code z, resulting in their generative forms [5, 40],
G(x,v, z) → (c, σ), to achieve 3D-aware object synthesis.

Since we use the layout as an internal representation, it
naturally disentangles the whole scene into several objects.
We can leverage multiple individual generative NeRFs
to model different objects, but it can easily lead to an
overwhelmingly large number of models and poor training
efficiency. To alleviate this issue, we propose to infer gen-
erative object radiance field in the canonical space [32,34],
to allow weight sharing among objects:

(ci, σi) = Gobj(b
−1
i (γ(x)), zi), (4)

where γ(·) is the position encoding function that transforms
input into Fourier features. The object generator Gobj(·)
infers each object independently, resulting in spatially dis-
entangled generative radiance fields. Note that Gobj(·) is
not conditioned on the viewing direction v because the up-
sampler of our neural renderer can learn the view-dependent
effects similar to previous works [4, 15, 60] (Sec. 3.3).
Spatial Condition. Although object bounding boxes are
used as a prior, their latents are still randomly sampled
regardless of their spatial configuration, leading to illogical
arrangements. To synthesize scene images and infer object
radiance fields with proper semantics, we adopt the location
and scale of each object as a condition for the generator
to encode more consistent intrinsic properties, i.e., shape
and category. To this end, we simply modify Eq. (4) by
concatenating the latent code with the Fourier features of
object location and scale:

(c, σ) = Gobj(b
−1
i (γ(x)), concat(zi, γ(ti), γ(si)). (5)

Therefore, semantic clues are injected into the layout in an
unsupervised manner, without explicit category annotation.
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Background Representation. Unlike objects, the back-
ground radiance field is only evaluated in the global space.
Considering that the background encodes lots of high-
frequency signals, we include the viewing direction v to
help background generator Gbg(·) to be able to learn such
details. The background generation can be formulated as:

(cbg, σbg) = Gbg(x,v, zbg). (6)

3.3. Efficient Rendering Pipeline

As aforementioned, we use spatial-disentangled radiance
fields to represent scenes. However, naı̈ve point sampling
solutions can lead to prohibitive computational overhead
when rendering multiple radiance fields. Considering the
independence of objects’ radiance fields, we can achieve
much more efficient rendering by only focusing on the valid
points within the bounding boxes.
Ray-Box Intersection in Canonical Space. Similar to
NeRF [29], we use the pinhole camera model to perform
ray casting. For each object, the points on the rays can
be sampled at adaptive depths rather than fixed ones since
the bounding box provides clues about where the object
locates. Specifically, the cast rays R = {rj |j ∈ [1,S2]}
in a resolution S are transformed into the canonical object
coordinate system. Then, Ray-AABB [27] (axis-aligned
bounding box) intersection algorithm is applied to calcu-
late the adaptive near and far depth (dj,l,n, dj,l,f ) of the
intersected segment between the ray rj and the l-th box
Bl. After that, Nd points are sampled equidistantly in the
interval [dj,l,n, dj,l,f ]. It is worth noting that we maintain
an intersection matrix M of size N × S2, whose elements
indicate if this ray intersects with the box. With M, we
select only valid points to infer, which can greatly reduce
the rendering cost.
Background Point Sampling. We adopt different back-
ground sampling strategies depending on the dataset.
In general, we do fixed depth sampling for bounded
backgrounds in indoor scenes and inherit the inverse
parametrization of NeRF++ [66] for complex and un-
bounded outdoor scenes, which uniformly samples back-
ground points in an inverse depth range. More details can
be founded in the Supplementary Materials.
Composition and Volume Rendering. In our approach,
objects are always assumed to be in front of the background.
So objects and background can be rendered independently
first and composited thereafter. For a ray rj intersecting
with nj (nj ≥ 1) boxes, its sample points Xj = {xj,k|k ∈
[1, njNd]} can be easily obtained from the depth range
and the intersection matrix M. Since rendering should
consider inter-object occlusions, we sort the points X by
depth, resulting in an ordered point set X s

j = {xj,sk |sk ∈
[1, njNd], dj,sk ≤ dj,sk+1

}, where dj,sk denotes the depth
of point xj,sk . With color c(xj,sk) and density σ(xj,sk)

of the ordered set inferred with Gobj(·) by Eq. (5), the
corresponding pixel f(rj) is calculated as:

f(rj) =

njNd∑
k=1

Tj,kαj,kc(xj,sk), (7)

Tj,k = exp(−
k−1∑
o=1

σ(xj,sk)δj,so), (8)

αj,k = 1− exp(−σ(xj,sk)δj,sk). (9)

For any ray that does not intersect with boxes, its color
and density are set to 0 and −∞, respectively. So that the
foreground object map F can be formulated as:

Fj =

{
f(rj), if ∃ m ∈ M:,j , m is true,
0, else.

(10)

Since the background points are sampled at a fixed depth,
we can directly adopt Eq. (6) to evaluate background points
in the global space without sorting. And the background
map N can also be obtained by volume rendering similar to
Eq. (7). Finally, F and N are alpha-blended into the final
image In with alpha extracted from Eq. (9):

In = F+

njNd∏
k=1

(1− αj,k)⊙N. (11)

Although our rendering pipeline efficiently composites
multiple radiance fields, it still suffers from slow per-
formance when rendering high-resolution images. To
mitigate this issue, we render a high-dimensional feature
map instead of a 3-channel color in a smaller resolution,
followed by a StyleGAN2-like architecture that upsamples
the feature map to the target resolution.

3.4. Local & Global Discrimination

Like other GAN-based approaches, discriminators play
a crucial role in training. Previous attempts for 3D-aware
scene synthesis [8,32] only adopt scene-level discriminators
to critique between rendered scenes and real captures.
However, such a scene discriminator pays more attention
to the global coherence of the whole scene, weakening
the supervision for individual objects. Given that each
object, especially those far from the camera, occupies a
small portion of the rendered frame, the scene discriminator
provides weak learning signal to its radiance field, leading
to inadequate training and poor object quality. Besides, the
scene discriminator shows only minimal capability in disen-
tangling objects and background, allowing the background
generator Gbg to overfit the whole scene easily.

Similar to [12], we propose to add an extra object dis-
criminator for local discrimination, leading to better object-
level supervision. Sepcifically, with the 3D layout Bi spa-
tially disentangling different objects, we project them into
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2D space as B2D
i to extract object patches PI = {Pi|Pi =

crop(I,B2D
i )} from synthesized and real scenes images

with simple cropping. The object patches are fed into the
object discriminator after being scaled to a uniform size.
We find that it significantly helps synthesize realistic objects
and benefits the disentanglement between objects and the
background. More details about our object discrimination
are included in the Supplementary Materials.

3.5. Training and Inference

Training Objectives. The whole generation process is
formulated as If = G(B,Z, ξ), where the generator G(·)
receives a layout B, a latent code set Z independently
sampled from distribution N (0, 1) to control objects, and
a camera pose ξ sampled from a prior distribution pξ
to synthesize the image If . During training, B, Z , ξ
are randomly sampled, and the real image Ir is sampled
from the dataset. Besides the generator, we employ the
scene discriminator Ds(·) to guarantee the global coherence
of the rendering and the object discriminator Dobj(·) on
individual objects for local discrimination. Generators and
discriminators are jointly trained as:

minLG = E[f(−Ds(If ))] + λ1E[f(−Dobj(PIf ))], (12)
minLD = E[f(−Ds(Ir))] + E[f(Ds(If ))] (13)

+ λ1(E[f(−Dobj(PIr )]) + E[f(Dobj(PIf )))]

+ λ2||∇IrDs(Ir)||22 + λ3∇PIr
Dobj(PIr )||22),

where f(t) = log(1 + exp(t)) is the softplus function, and
PIr and PIf are the extracted object patches of synthesized
image If and real image Ir, respectively. λ1 stands for
the loss weight of the object discriminator. The last two
terms in Eq. (13) are the gradient penalty regularizers of
both discriminators, with λ2 and λ3 denoting their weights.
Inference. Besides high-quality scene generation, our
method naturally supports object editing by manipulating
the layout prior as shown in Fig. 1. Various applications
are shown in Sec. 4.3. In particular, ray marching at a
small resolution (64) may cause aliasing especially when
moving the objects. We adopt supersampling anti-aliasing
(SSAA) [43] to perform ray marching at a temporary higher
resolution (128) and downsample the feature map to the
original resolution before the upsampler. This strategy is
used only for object synthesis, and we do not change the
background resolution during inference.

4. Experiments
4.1. Settings

Datasets. We evaluate DisCoScene on three multi-object
scene datasets, including CLEVR [21], 3D-FRONT [10,11],
and WAYMO [48]. CLEVR is a diagnostic multi-object
dataset. We use the official script [21] to render scenes

with 2 and random primitives. Our CLEVR dataset consists
of 80K samples in 256 × 256 resolution. 3D-FRONT is
an indoor scene dataset, containing a collection of 6.8K
houses with 140K rooms. We obtain 4K bedrooms after
filtering out rooms with uncommon arrangements or un-
natural sizes and use BlenderProc to render 20 images per
room from random camera positions, resulting in a total of
80K images. WAYMO is a large-scale autonomous driving
dataset with 1K video sequences of outdoor scenes. Six
images are provided for each frame, and we only keep the
front view. We also apply heuristic rules to filter out small
and noisy cars and collect a subset of 70K images. Because
the width is always larger than height on WAYMO, we adopt
the black padding to make images square, similar with
StyleGAN2 [25]. More details about data preprocessing
and rendering are included in Supplementary Materials.
Baselines. We compare with both 2D and 3D GANs. For
2D, we compare with StyleGAN2 [25] on image quality. As
for 3D, we compare with EpiGRAF [46], VolumeGAN [60],
and EG-3D [4] on object generation, and GIRAFFE [32],
GSN [8] on scene generation. We use the baseline models
either released along with their papers or official implemen-
tations to train on our data.
Implementation Details. We use the same architecture and
parameters of the mapping network from StyleGAN2 [25].
For object generator Gobj(·) and background generator
Gbg(·), we use 8 and 4 Modulated Fully-Connected layers
(ModFCs) with 256 and 128 channels, respectively. Ray
casting is performed on 64 × 64 and the feature map is
rendered to image with neural renderer. The progressive
training strategy from PG-GAN [22] is adopted for better
image quality and multi-view consistency. Discriminators
Ds(·) and Dobj(·) both share the similar architecture of
StyleGAN2 but with only half channels. Practically, the
resolution of Dobj(·) is always 1/2 on WAYMO or 1/4
on CLEVR and 3D-FRONT of Ds(·). All our models are
trained on 8× V100/A100 GPUs with a batch size of 64.
λ1 is set to 1 to balance object and scene discriminators. λ2

and λ3 are set to 1 to maintain training stability. Unless
specified, other hyperparamters are same as StyleGAN2.
More details about network architecture and training can be
found in Supplementary Materials.

4.2. Main Results

Qualitative Comparison. Fig. 2 presents the synthesized
images in a resolution of 256 × 256 of our method and
baselines on all the datasets. We compare our method on
explicit camera control and object editing with baselines.
EG3D, with a single radiance field, can manipulate the
global camera of the synthesized images. As for EG3D,
although it converges on the datasets, the object fidelity are
lower than our method. On CLEVR with a narrow camera
distribution, the results of EG3D are inconsistent. In the
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Figure 2. Qualitative comparison between DisCoScene and baselines. Explicit camera rotation is evaluated on CLEVR and 3D-FRONT.
Object rotation (left) and object translation (right) are evaluated on WAYMO. All images are in 256× 256 resolution.

Table 2. Quantitative comparisons on different datasets. FID, KID (×103) are reported as the evaluation metrics. TR. and INF. denote
training and inference costs, evaluated in V100 days and ms/image (single V100 over 1K samples), respectively. Note that we highlight
the best results among 3D-aware models.

Model CLEVR 3D-FRONT WAYMO

FID ↓ KID ↓ TR. ↓ INF. ↓ FID ↓ KID ↓ FID ↓ KID ↓
StyleGAN2 [25] 4.5 3.0 13.3 44 12.5 4.3 15.1 8.3

EpiGRAF [46] 10.4 8.3 16.0 114 107.2 102.3 27.0 26.1
VolumeGAN [60] 7.5 5.1 15.2 90 52.7 38.7 29.9 18.2
EG3D [4] 4.1 12.7 25.8 55 19.7 13.5 26.0 45.4

GIRAFFE [32] 78.5 61.5 5.2 62 56.5 46.8 175.7 212.1
GSN [8] − − − − 130.7 87.5 − −
DisCoScene 3.5 2.1 18.1 95 13.8 7.4 16.0 8.4

first example, the color of the cylinder changes from gray to
green across different views. Meanwhile, our method learns
better 3D structure of the objects and achieves better camera
control. On the challenging WAYMO dataset, it is difficult
to encode huge street scenes within a single generator, thus
we train GIRAFFE and our DisCoScene in the camera
space to evaluate object editing. GIRAFFE struggles to
generate realistic results and, while manipulating objects,
their geometry and appearance are not preserved well. Our
approach is capable of handling these complicated scenarios
with good variations. Wherever the object is placed and
regardless of how the rotation is carried out, the synthesized
objects are substantially better and more consistent than
GIRAFFE. It demonstrates the effectiveness of our spatially
disentangle radiance fields built upon the layout prior. More
comparisons are included in Supplementary Materials.

Quantitative Comparison. Tab. 2 reports the quantitative
metrics on the quality of results, including FID [18] and

KID [3]. All metrics are calculated between 50K generated
samples and all real images. DisCoScene consistently
outperforms baselines with significant improvement on all
datasets. Besides, training cost in V100 days and testing
cost in ms/image (on a single V100 over 1K samples) are
also included to reflect the efficiency of our model. Note
that the inference cost of 3D-aware models is evaluated
on generating radiance fields rather than images. In such
a case, EG3D and EpiGRAF are not fast as excepted due
to the heavy computation on tri-planes. With comparable
training and testing cost, it even achieves similar level of
image quality with state-of-the-art 2D GAN baselines, e.g.,
StyleGAN2 [25], while allowing for explicit camera control
and object editing that are otherwise challenging.

4.3. Controllable Scene Generation

The layout prior in our model enables versatile user
controls of scene objects. In what follows, we evaluate the
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Figure 3. Controllable scene synthesis in 256×256 resolution. We perform versatile user control of the global camera and scene objects,
such as rearrangement, removal, insertion, and restyling. Editings are performed on the original generations (the left one of each row).

flexibility and effectiveness of our model through various
3D manipulation applications in different datasets. Exam-
ples are shown in Fig. 3 and more results can be found in
Supplementary Materials.
Rearranging Objects. We can transform bounding boxes
B to rearrange (rotation and translation) the objects in the
scenes without affecting their appearance. Transforming
shapes in CLEVR, furniture in 3D-FRONT, and cars in
WAYMO all show consistent results. In particular, rotating
symmetric shapes (i.e., spheres and cylinders) in CLEVR
shows little changes, suggesting desired multi-view consis-
tency. Our model can properly handle mutual occlusion.
Take the blue cube from CLEVR as example (1-st row of
Fig. 3), our model can produce new occlusions between it
and the grey cylinder and generate high-quality renderings.
Removing and Cloning Objects. Users can update the
layout by removing or cloning bounding boxes. Our method
seamlessly removes objects with the background inpainted
realistically, even without training on any pure background,
including the challenging dataset of WAYMO (3-rd row of
Fig. 3). Object cloning is also naturally supported, by
copying and pasting a box to a new location in the layout.
Restyling Objects. Although appearance and shape are not
explicitly modeled by the latent code, we can reuse the en-
coded hierarchical knowledge to perform object restyling.
Like [15, 42, 61], we arbitrarily sample latent codes and
perform style-mixing on different layers to achieve indepen-
dent control over appearance and shape. Fig. 3 presents the
restyling results on certain objects, i.e., the front cylinder in
CLEVR, the bed in 3D-FRONT, and the left car in WAYMO.
Camera Movement. Explicit camera control is also per-
mitted. Even for CLEVR that is trained on very limited
camera ranges, we can rotate the camera up to an extreme
side view. Our model also produces consistent results when
rotating the camera on 3D-FRONT (2-nd row of Fig. 3).

4.4. Ablation Study

We ablate main components of our approach to better
understand their individual contributions. In addition to the

Table 3. Ablation analysis of object discriminator (Dobj).

CLEVR 3D-FRONT WAYMO

FID w/o Dobj 5.0 18.6 19.5
w/ Dobj 3.5 13.8 16.0

FIDobj
w/o Dobj 19.1 33.7 95.1
w/ Dobj 5.6 19.5 16.3

Table 4. Ablation analysis of spatial condition (S-Cond).

FID FIDobj
w/ S-Cond w/o S-Cond w/ S-Cond w/o S-Cond

3D-FRONT 13.8 15.2 19.5 23.2

FID score that measures the quality of the entire image, we
also provide another metric FIDobj to measure the quality
of individual objects. Specifically, we use the projected 2D
boxes to crop objects from the synthesized images and then
perform FID evaluation against the ones from real images.
Object Discriminator. The object discriminator Dobj

plays a crucial role in synthesizing realistic objects, as eval-
uted in Tab. 3. Obviously, the object fidelity is significantly
improved across all datasets with Dobj. Also, the quality of
the whole scene generation is improved as well, contributed
by better objects. Fig. 5 visually shows that our method
can successfully disentangle objects from the background
with the help of object discriminator. Although the baseline
model is able to disentangle objects on 3D-FRONT from
simple background to certain extent, the background suffers
from the entanglement with objects, resulting in obvious
artifacts as well as illogical layout. On more challenging
datasets like WAYMO, the complex backgrounds make the
disentanglement even more difficult, so that the background
model easily overfits the whole scene as a single radiance
field. Thanks to the object discriminator, our full model
benefits from object supervision, leading to better disentan-
glement, even without seeing a pure background image.
Spatial Condition. To analyze how spatial condition (S-
Cond) affects the quality of generation, we compare results
with models trained with and without S-Cond on 3D-
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Figure 5. Ablation on scene disentanglement. We independently
infer objects and background to show the quality of scene disen-
tanglement with regard to object discriminator Dobj.

FRONT (Fig. 4a). For example, our full model consistently
infers beds at the center of rooms, while the baseline
predicts random items like tables or nightstands that rarely
appear in the middle of bedrooms. These results demon-
strate that spatial condition can assist the generator with
appropriate semantics from simple layout priors. Note that
this correlation between spatial configurations and object
semantics is automatically emerged without any supervi-
sion. We also numerically compare the image quality on
these two models in Tab. 4, which shows that S-Cond also
achieves better image quality at both scene- and object-
level, because more proper semantics are more in line with
the native distribution of real images.
Supersampling Anti-Aliasing. We adopt a simple super-
sampling (SSAA) strategy to reduce edge aliasing by sam-
pling more points during inference (Sec. 3.5). Thanks to
our efficient object point sampling, doubling the resolution
of foreground points keeps a similar inference speed (105
ms/image), comparable with original speed (95 ms/image).
Results with different sampling points are shown in Fig. 4b.
Taking the right boundary of the cabinet as an example
(see the zoom-in insets for better visualization), when the
cabinet is moved, SSAA achieves more consistent boundary
compared with the jaggy one in the baseline.
Neural Renderer for Shadow. We adopt the StyleGAN2-
like neural renderer to boost the rendering efficiency
(Sec. 3.3). Besides the low computational cost, the added
capacity of the neural renderer also brings better implicit
modeling of realistic lighting effects such as shadowing.
Therefore, without handling the shadowing effect in our
rendering pipeline, our model can still synthesize high-
quality shaodws on datasets such as CLEVR (Fig. 4c). This
is because the large receptive field brought by 3× 3 convo-
lutions and upsampler blocks make the neural renderer be
aware of the object locations and progressively add shadows

Original Inversion Rotation Translation Insertion

Figure 6. Real image inversion and editing.

to the low resolution features rendered from radiance fields.

5. Discussion and Conclusion

Real Image Editing. Fig. 6 shows that it is possible to
embed a real image into the latent space of our pretrained
model using pivotal tuning inversion (PTI) [39]. Besides
reconstruction, all object manipulation operations are sup-
ported to edit the image. As one of the very first steps
towards 3D scene editing from a single image, we believe
that our method proves a promising venue and can inspire
future research efforts along this direction.

Limitations and Future Work. Our model requires the
abstract layout prior as the input. For in-the-wild datasets,
we need monocular 3D object detector [54] to infer pseudo
layouts. While existing approaches attempt to learn the
layout in an end-to-end manner, they struggle to generalize
to complex scenes consisting of multiple objects. So it
would be interesting to explore 3D layout estimation for
complex scenes and combine with our approach end-to-end.
Also, although our work shows significant improvement
over existing 3D-aware scene generators, it is still challeng-
ing to learn on the street scenes in the global space due to the
limited model capacity. Large-scale NeRFs [51, 57] might
be one potention solutions.

Conclusion. This work presents DisCoScene, a method
for controllable 3D-aware scene synthesis on challenging
datasets. By taking spatially disentangled radiance fields as
the representation based on a very abstract layout prior, our
method is able to generate high-fidelity scene images and
allows for versatile object-level editing.
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